NON-VANISHING OF MAASS FORM L-FUNCTIONS AT THE CENTRAL POINT

被引:7
作者
Balkanova, Olga [1 ,2 ]
Huang, Bingrong [3 ,4 ]
Sodergren, Anders [5 ,6 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
[2] Inst Appl Math, Khabarovsk Div, 54 Dzerzhinsky St, Khabarovsk 680000, Russia
[3] Shandong Univ, Data Sci Inst, Jinan 250100, Peoples R China
[4] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[5] Chalmers Univ Technol, Dept Math Sci, SE-41296 Gothenburg, Sweden
[6] Univ Gothenburg, SE-41296 Gothenburg, Sweden
基金
俄罗斯科学基金会; 欧洲研究理事会; 瑞典研究理事会;
关键词
Maass cusp forms; L-functions; non-vanishing; mollification; AUTOMORPHIC L-FUNCTIONS; CENTRAL L-VALUES; MEAN-SQUARE; RANK;
D O I
10.1090/proc/15208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the family {L-j(s)}(j=1)(infinity) of L-functions associated to an orthonormal basis {u(j)}(j=1)(infinity) of even Hecke-Maass forms for the modular group SL(2, Z) with eigenvalues {lambda(j) = kappa(2)(j) + 1/4}(j=1)(infinity). We prove the following effective non-vanishing result: At least 50% of the central values L-j(1/2) with kappa(j) <= T do not vanish as T -> infinity. Furthermore, we establish effective non-vanishing results in short intervals.
引用
收藏
页码:509 / 523
页数:15
相关论文
共 36 条
[1]   Low-Lying Zeros of Maass Form L-Functions [J].
Alpoge, Levent ;
Miller, Steven J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (10) :2678-2701
[2]  
Balkanova O., J EUR MATH SOC JEMS
[3]   Non-vanishing of automorphic L-functions of prime power level [J].
Balkanova, Olga ;
Frolenkov, Dmitry .
MONATSHEFTE FUR MATHEMATIK, 2018, 185 (01) :17-41
[4]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[5]   Decoupling for Perturbed Cones and the Mean Square of |ζ(1/2+it)| [J].
Bourgain, Jean ;
Watt, Nigel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (17) :5219-5296
[6]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[7]   NONVANISHING OF THE FAMILY OF Γ1(q)-AUTOMORPHIC L-FUNCTIONS AT THE CENTRAL POINT [J].
Djankovic, Goran .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (06) :1423-1439
[8]   THE CRITICAL ORDER OF VANISHING OF AUTOMORPHIC L-FUNCTIONS WITH LARGE LEVEL [J].
DUKE, W .
INVENTIONES MATHEMATICAE, 1995, 119 (01) :165-174
[9]  
Fomenko O. M., 2000, J MATH SCI, V263, P193, DOI [10.1023/A:1015480530032, DOI 10.1023/A:1015480530032]
[10]   COEFFICIENTS OF MAASS FORMS AND THE SIEGEL ZERO [J].
HOFFSTEIN, J ;
LOCKHART, P .
ANNALS OF MATHEMATICS, 1994, 140 (01) :161-176