Microbial transport: Adaptations to natural environments

被引:67
作者
Konings, Wil N. [1 ]
机构
[1] Univ Groningen, Dept Microbiol, Groningen Biomol Sci & Biotechnol Ctr, NL-9751 NN Haren, Netherlands
来源
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY | 2006年 / 90卷 / 04期
关键词
metabolic energy generation; survival; membrane transport; multidrug resistance; extremophiles; Lactic Acid Bacteria;
D O I
10.1007/s10482-006-9089-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cytoplasmic membrane of bacteria is the matrix for metabolic energy transducing processes such as proton motive force generation and solute transport. Passive permeation of protons across the cytoplasmic membrane is a crucial determinant in the proton motive generating capacity of the organisms. Adaptations of the membrane composition are needed to restrict the proton permeation rates especially at higher temperatures. Thermophilic bacteria cannot sufficiently restrict this proton permeation at their growth temperature and have to rely on the much lower permeation of Na + to generate a sodium motive force for driving metabolic energy-dependent membrane processes. Specific transport systems mediate passage across the membrane at physiological rates of all compounds needed for growth and metabolism and of all end products of metabolism. Some of transport systems, the secondary transporters, transduce one form of electrochemical energy into another form. These transporters can play crucial roles in the generation of metabolic energy. This is especially so in anaerobes such as Lactic Acid Bacteria which live under energy-limited conditions. Several transport systems are specifically aimed at the generation of metabolic energy during periods of energy-limitation. In their natural environment bacteria are also often exposed to cytotoxic compounds, including antibiotics. Many bacteria can respond to this live-threatening condition by overexpressing powerful drug-extruding multidrug resistance systems.
引用
收藏
页码:325 / 342
页数:18
相关论文
共 101 条
[1]   ARGININE CATABOLISM BY MICROORGANISMS [J].
ABDELAL, AT .
ANNUAL REVIEW OF MICROBIOLOGY, 1979, 33 :139-168
[2]   Exchange of aspartate and alanine - Mechanism for development of a proton-motive force in bacteria [J].
Abe, K ;
Hayashi, H ;
Malone, PC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (06) :3079-3084
[3]  
Bandell M, 1998, APPL ENVIRON MICROB, V64, P1594
[4]   FREEZE-FRACTURE PLANES OF METHANOGEN MEMBRANES CORRELATE WITH THE CONTENT OF TETRAETHER LIPIDS [J].
BEVERIDGE, TJ ;
CHOQUET, CG ;
PATEL, GB ;
SPROTT, GD .
JOURNAL OF BACTERIOLOGY, 1993, 175 (04) :1191-1197
[5]   Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP [J].
Bolhuis, H ;
vanVeen, HW ;
Brands, JR ;
Putman, M ;
Poolman, B ;
Driessen, AJM ;
Konings, WN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (39) :24123-24128
[6]   PROTON MOTIVE FORCE-DRIVEN AND ATP-DEPENDENT DRUG EXTRUSION SYSTEMS IN MULTIDRUG-RESISTANT LACTOCOCCUS-LACTIS [J].
BOLHUIS, H ;
MOLENAAR, D ;
POELARENDS, G ;
VANVEEN, HW ;
POOLMAN, B ;
DRIESSEN, AJM ;
KONINGS, WN .
JOURNAL OF BACTERIOLOGY, 1994, 176 (22) :6957-6964
[7]   Multidrug resistance in Lactococcus lactis: Evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane [J].
Bolhuis, H ;
vanVeen, HW ;
Molenaar, D ;
Poolman, B ;
Driessen, AJM ;
Konings, WN .
EMBO JOURNAL, 1996, 15 (16) :4239-4245
[8]   THE LACTOCOCCAL LMRP GENE ENCODES A PROTON MOTIVE FORCE-DEPENDENT DRUG TRANSPORTER [J].
BOLHUIS, H ;
POELARENDS, G ;
VANVEEN, HW ;
POOLMAN, B ;
DRIESSEN, AJM ;
KONINGS, WN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (44) :26092-26098
[9]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[10]   FORMATION OF UNILAMELLAR LIPOSOMES FROM TOTAL POLAR LIPID EXTRACTS OF METHANOGENS [J].
CHOQUET, CG ;
PATEL, GB ;
BEVERIDGE, TJ ;
SPROTT, GD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (09) :2894-2900