Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

被引:38
作者
Pakarinen, Janne [1 ]
Khafizov, Marat [2 ]
He, Lingfeng [1 ]
Wetteland, Chris [3 ]
Gan, Jian [2 ]
Nelson, Andrew T. [4 ]
Hurley, David H. [2 ]
El-Azab, Anter [5 ]
Allen, Todd R. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
[5] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA
关键词
URANIUM-DIOXIDE; SINGLE-CRYSTALS; SOLID-SOLUTIONS; NUCLEAR-FUELS; BURN-UP; LATTICE; CERAMICS; EVOLUTION; BEHAVIOR; DEFECTS;
D O I
10.1016/j.jnucmat.2014.07.053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in X-ray diffraction after ion irradiation up to 5 x 1016 He2+/cm(2) at low-temperature (<200 degrees C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 mu m thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 mu m) in the sample subjected to 5 x 10(16) He2+/cm(2), the highest fluence reached, while similar features were not detected at 9 x 10(15) He2+/cm(2). Laser-based thermoreflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55% for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:283 / 289
页数:7
相关论文
共 42 条
[1]   Thermal conductivity measurements on UO2+x from 300 to 1,400 K [J].
Amaya, M ;
Kubo, T ;
Korei, Y .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1996, 33 (08) :636-640
[2]   Positron annihilation characteristics in UO2: for lattice and vacancy defects induced by electron irradiation [J].
Barthe, M. -F. ;
Labrim, H. ;
Gentils, A. ;
Desgardin, P. ;
Corbel, C. ;
Esnouf, S. ;
Piron, J. P. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 10, 2007, 4 (10) :3627-+
[3]  
Bates J., 1965, THERMAL DIFFUSIVITY
[4]   LOW-TEMPERATURE SWELLING OF METALS AND CERAMICS [J].
BORODIN, VA ;
RYAZANOV, AI ;
SHERSTENNIKOV, DG .
JOURNAL OF NUCLEAR MATERIALS, 1993, 202 (1-2) :169-179
[5]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[6]   Local structure and charge distribution in the UO2-U4O9 system [J].
Conradson, SD ;
Manara, D ;
Wastin, F ;
Clark, DL ;
Lander, GH ;
Morales, LA ;
Rebizant, J ;
Rondinella, VV .
INORGANIC CHEMISTRY, 2004, 43 (22) :6922-6935
[7]   Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study [J].
Debelle, Aurelien ;
Boulle, Alexandre ;
Garrido, Frederico ;
Thome, Lionel .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (13) :4683-4689
[8]   Thermal conductivity of hypostoichiometric low Pu content (U,Pu)O2-x mixed oxide [J].
Duriez, C ;
Alessandri, JP ;
Gervais, T ;
Philipponneau, Y .
JOURNAL OF NUCLEAR MATERIALS, 2000, 277 (2-3) :143-158
[9]   University of Wisconsin Ion Beam Laboratory: A Facility for Irradiated Materials and Ion Beam Analysis [J].
Field, K. G. ;
Wetteland, C. J. ;
Cao, G. ;
Maier, B. R. ;
Dickerson, C. ;
Gerczak, T. J. ;
Field, C. R. ;
Kriewaldt, K. ;
Sridharan, K. ;
Allen, T. R. .
APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 :159-164
[10]   Thermophysical properties of uranium dioxide [J].
Fink, JK .
JOURNAL OF NUCLEAR MATERIALS, 2000, 279 (01) :1-18