Unsupervised Linear and Nonlinear Channel Equalization and Decoding Using Variational Autoencoders

被引:31
作者
Caciularu, Avi [1 ,2 ]
Burshtein, David [1 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
[2] Bar Ilan Univ, Dept Comp Sci, IL-5290002 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Blind equalizers; maximum likelihood estimation; deep learning; convolutional neural networks; belief propagation; MAXIMUM-LIKELIHOOD; BLIND EQUALIZATION; INFERENCE; ALGORITHM;
D O I
10.1109/TCCN.2020.2990773
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
A new approach for blind channel equalization and decoding, variational inference, and variational autoencoders (VAEs) in particular, is introduced. We first consider the reconstruction of uncoded data symbols transmitted over a noisy linear intersymbol interference (ISI) channel, with an unknown impulse response, without using pilot symbols. We derive an approximate maximum likelihood estimate to the channel parameters and reconstruct the transmitted data. We demonstrate significant and consistent improvements in the error rate of the reconstructed symbols, compared to existing blind equalization methods such as constant modulus, thus enabling faster channel acquisition. The VAE equalizer uses a convolutional neural network with a small number of free parameters. These results are extended to blind equalization over a noisy nonlinear ISI channel with unknown parameters. We then consider coded communication using low-density parity-check (LDPC) codes transmitted over a noisy linear or nonlinear ISI channel. The goal is to reconstruct the transmitted message from the channel observations corresponding to a transmitted codeword, without using pilot symbols. We demonstrate improvements compared to the expectation maximization (EM) algorithm using turbo equalization. Furthermore, unlike EM, the computational complexity of our method does not have exponential dependence on the size of the channel impulse response.
引用
收藏
页码:1003 / 1018
页数:16
相关论文
共 60 条
  • [1] Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/2951913.2976746, 10.1145/3022670.2976746]
  • [2] An Adaptive Constant Modulus Blind Equalization Algorithm and Its Stochastic Stability Analysis
    Abrar, Shafayat
    Nandi, Asoke K.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (01) : 55 - 58
  • [3] [Anonymous], 1959, Individual choice behavior
  • [4] [Anonymous], 2014, 2 INT C LEARNING REP
  • [5] OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE
    BAHL, LR
    COCKE, J
    JELINEK, F
    RAVIV, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) : 284 - 287
  • [6] Bishop C. M., 2006, PATTERN RECOGN, DOI DOI 10.1117/1.2819119
  • [7] Variational Inference: A Review for Statisticians
    Blei, David M.
    Kucukelbir, Alp
    McAuliffe, Jon D.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 859 - 877
  • [8] Caciularu A, 2018, 2018 IEEE INT C COMM, P1
  • [9] Cammerer S, 2017, IEEE GLOB COMM CONF
  • [10] Maximum likelihood blind channel estimation in the presence of Doppler shifts
    Cirpan, HA
    Tsatsanis, MK
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (06) : 1559 - 1569