Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route

被引:32
作者
Zhao, Hongtao [1 ,2 ]
Tian, Mingwei [1 ,2 ,3 ]
Hao, Yunna [1 ,2 ]
Qu, Lijun [1 ,2 ,3 ]
Zhu, Shifeng [1 ,2 ,3 ]
Chen, Shaojuan [1 ]
机构
[1] Qingdao Univ, Inst Adv Fibrous Mat & Applicat, Coll Text & Clothing, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Univ, Lab New Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China
[3] Qingdao Univ, Collaborat Innovat Ctr Marine Biomass Fibers Mat, Qingdao 266071, Shandong, Peoples R China
基金
中国博士后科学基金;
关键词
GRAPHITE OXIDE; THIN-FILMS; THERMAL-CONDUCTIVITY; CARBON NANOTUBES; SUPERCAPACITOR; PERFORMANCE; REDUCTION; FIBERS; HYDROXYAPATITE; NANOCOMPOSITES;
D O I
10.1007/s10853-018-2230-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fabric surface coating is deemed as the major route to fabricate functional fabrics, and interface stability is a critical factor affecting the performance of fabric. Here, electrophoretic deposition (EPD) is employed for fast and facile modification of hydrophobic polyamide fabric with graphene oxide (GO) nanosheets embedded in polymeric networks. For better grafting, polyethyleneimine is utilized to modify the surface of the fabric substrate, endowing more polar groups and resulting in reasonable interface properties of graphene oxide and fabric substrate. GO nanosheets are uniformly deposited on modified fabric via EPD method and then reduced by green hot-press processing. The modified fabric shows excellent electrical conductivity (electrical conductivity > 3.3 S/m), thermal conductivity (0.521 W/m center dot K), and UV protection performance (UPF > 500, UVA < 0.2%). Meanwhile, the contact angle test of fabric reveals that the addition of graphene significantly improved the hydrophobicity of the fabric.
引用
收藏
页码:9504 / 9520
页数:17
相关论文
共 53 条
  • [1] Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/nmat2858, 10.1038/NMAT2858]
  • [2] Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties
    An, Qi
    Rider, Andrew N.
    Thostenson, Erik T.
    [J]. CARBON, 2012, 50 (11) : 4130 - 4143
  • [3] [Anonymous], 2010, 1832004 AATCC, P318
  • [4] [Anonymous], 2010, AATCC TECHNICAL MANU, V85, P97
  • [5] *ASTM, 1990, D151885 ASTM
  • [6] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [7] Insulin impregnated reduced graphene oxide/Ni(OH)2 thin films for electrochemical insulin release and glucose sensing
    Belkhalfa, Hakim
    Teodorescu, Florina
    Queniat, Gurvan
    Coffinier, Yannick
    Dokhan, Nahed
    Sam, Sabrina
    Abderrahmani, Amar
    Boukherroub, Rabah
    Szunerits, Sabine
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2016, 237 : 693 - 701
  • [8] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [9] A review on fundamentals and applications of electrophoretic deposition (EPD)
    Besra, Laxmidhar
    Liu, Meilin
    [J]. PROGRESS IN MATERIALS SCIENCE, 2007, 52 (01) : 1 - 61
  • [10] Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
    Cai, Weiwei
    Piner, Richard D.
    Stadermann, Frank J.
    Park, Sungjin
    Shaibat, Medhat A.
    Ishii, Yoshitaka
    Yang, Dongxing
    Velamakanni, Aruna
    An, Sung Jin
    Stoller, Meryl
    An, Jinho
    Chen, Dongmin
    Ruoff, Rodney S.
    [J]. SCIENCE, 2008, 321 (5897) : 1815 - 1817