A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials

被引:286
|
作者
Seddegh, Saeid
Wang, Xiaolin [1 ]
Henderson, Alan D.
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas 7001, Australia
关键词
Latent heat energy storage; Phase change material; Natural convection; Melting; Solidification; HEAT-TRANSFER ENHANCEMENT; TRIPLEX TUBE; PCM SOLIDIFICATION; NUMERICAL-ANALYSIS; EXTERNAL FINS; STEARIC-ACID; SYSTEM; TEMPERATURE; CYLINDER; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2015.09.107
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, thermal behaviour in a vertical and horizontal shell-and-tube energy storage system using phase change materials (PCMs) is investigated and compared using a combined conduction and convection heat transfer model. The model is first evaluated using published experimental data available in the literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during the charging and discharging processes of PCMs. The simulated results show that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the discharging process, the thermal behaviour does not show any difference between horizontal and vertical systems. The results indicate that the horizontal orientation has superior thermal performance during the charging and in particular during part-load energy charging. The results also show that increasing the hot heat transfer fluid (HTF) inlet temperature substantially reduces the total charging time for both orientations. However, increasing the flow rate does not greatly affect the charging and discharging processes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 50 条
  • [21] Experimental and numerical characterization of natural convection in a vertical shell-and-tube latent thermal energy storage system
    Seddegh, Saeid
    Joybari, Mahmood Mastani
    Wang, Xiaolin
    Haghighat, Fariborz
    SUSTAINABLE CITIES AND SOCIETY, 2017, 35 : 13 - 24
  • [22] The error of neglecting natural convection in high temperature vertical shell-and-tube latent heat thermal energy storage systems
    Tehrani, S. Saeed Mostafavi
    Diarce, Gonzalo
    Taylor, Robert A.
    SOLAR ENERGY, 2018, 174 : 489 - 501
  • [23] NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES
    Ajarostaghi, Seyed Soheil Mousavi
    Delavar, Mojtaba Aghajani
    Dolati, Adel
    HEAT TRANSFER RESEARCH, 2017, 48 (16) : 1515 - 1529
  • [24] Analytical solution of heat transfer in a shell-and-tube latent thermal energy storage system
    Bechiri, Mohammed
    Mansouri, Kacem
    RENEWABLE ENERGY, 2015, 74 : 825 - 838
  • [25] Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube
    Deng, Shengxiang
    Nie, Changda
    Wei, Guangya
    Ye, Wei-Biao
    ENERGY AND BUILDINGS, 2019, 183 : 161 - 173
  • [26] Investigation on the Melting Performance of a Phase Change Material Based on a Shell-and-Tube Thermal Energy Storage Unit with a Rectangular Fin Configuration
    Yu, Meng
    Sun, Xiaowei
    Su, Wenjuan
    Li, Defeng
    Shen, Jun
    Zhang, Xuejun
    Jiang, Long
    ENERGIES, 2022, 15 (21)
  • [27] Comprehensive effective thermal conductivity correlation and fast model for the melting of a phase change material inside a horizontal shell-and-tube unit
    Rocha, Thiago Torres Martins
    Teggar, Mohamed
    Khan, Junaid
    Trevizoli, Paulo Vinicius
    de Oliveira, Raphael Nunes
    Khodadadi, J. M.
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [28] Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam
    Pu, Liang
    Zhang, Shengqi
    Xu, Lingling
    Ma, Zhenjun
    Wang, Xinke
    RENEWABLE ENERGY, 2021, 174 : 573 - 589
  • [29] NUMERICAL AND EXPERIMENTAL INVESTIGATION OF SHELL-AND-TUBE PHASE CHANGE MATERIAL THERMAL STORAGE UNIT
    Sherer, Thomas H., II
    Joshi, Yogendra
    INTERNATIONAL TECHNICAL CONFERENCE AND EXHIBITION ON PACKAGING AND INTEGRATION OF ELECTRONIC AND PHOTONIC MICROSYSTEMS, 2015, VOL 1, 2015,
  • [30] A novel shell-and-tube thermal energy storage tank: Modeling and investigations of thermal performance
    Mao, Qianjun
    Liu, Ning
    Peng, Li
    Liu, Donghua
    APPLIED THERMAL ENGINEERING, 2019, 159