A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials

被引:302
作者
Seddegh, Saeid
Wang, Xiaolin [1 ]
Henderson, Alan D.
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas 7001, Australia
关键词
Latent heat energy storage; Phase change material; Natural convection; Melting; Solidification; HEAT-TRANSFER ENHANCEMENT; TRIPLEX TUBE; PCM SOLIDIFICATION; NUMERICAL-ANALYSIS; EXTERNAL FINS; STEARIC-ACID; SYSTEM; TEMPERATURE; CYLINDER; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2015.09.107
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, thermal behaviour in a vertical and horizontal shell-and-tube energy storage system using phase change materials (PCMs) is investigated and compared using a combined conduction and convection heat transfer model. The model is first evaluated using published experimental data available in the literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during the charging and discharging processes of PCMs. The simulated results show that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the discharging process, the thermal behaviour does not show any difference between horizontal and vertical systems. The results indicate that the horizontal orientation has superior thermal performance during the charging and in particular during part-load energy charging. The results also show that increasing the hot heat transfer fluid (HTF) inlet temperature substantially reduces the total charging time for both orientations. However, increasing the flow rate does not greatly affect the charging and discharging processes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 33 条
[1]   Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials [J].
Adine, Hamid Ait ;
El Qarnia, Hamid .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (04) :2132-2144
[2]   Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array [J].
Agyenim, Francis ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE ENERGY, 2010, 35 (01) :198-207
[3]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[4]   Thermal energy storage performance of paraffin in a novel tube-in-shell system [J].
Akgun, Mithat ;
Aydm, Orhan ;
Kaygusuz, Kamil .
APPLIED THERMAL ENGINEERING, 2008, 28 (5-6) :405-413
[5]   Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :684-695
[6]   Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
APPLIED THERMAL ENGINEERING, 2013, 53 (01) :147-156
[7]   CFD applications for latent heat thermal energy storage: a review [J].
Al-abidi, Abduljalil A. ;
Bin Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammed, Abdulrahman Th .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 20 :353-363
[8]  
Bergman T.L., 2011, Fundamentals of Heat and Mass Transfer, Vseventh, P518
[9]   Geometric design of solar-aided latent heat store depending on various parameters and phase change materials [J].
Esen, M ;
Durmus, A ;
Durmus, A .
SOLAR ENERGY, 1998, 62 (01) :19-28
[10]   HEAT-TRANSFER MEASUREMENTS AND CORRELATIONS IN THE TRANSITION REGION FOR A CIRCULAR TUBE WITH 3 DIFFERENT INLET CONFIGURATIONS [J].
GHAJAR, AJ ;
TAM, LM .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1994, 8 (01) :79-90