A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials

被引:286
|
作者
Seddegh, Saeid
Wang, Xiaolin [1 ]
Henderson, Alan D.
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas 7001, Australia
关键词
Latent heat energy storage; Phase change material; Natural convection; Melting; Solidification; HEAT-TRANSFER ENHANCEMENT; TRIPLEX TUBE; PCM SOLIDIFICATION; NUMERICAL-ANALYSIS; EXTERNAL FINS; STEARIC-ACID; SYSTEM; TEMPERATURE; CYLINDER; PERFORMANCE;
D O I
10.1016/j.applthermaleng.2015.09.107
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, thermal behaviour in a vertical and horizontal shell-and-tube energy storage system using phase change materials (PCMs) is investigated and compared using a combined conduction and convection heat transfer model. The model is first evaluated using published experimental data available in the literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during the charging and discharging processes of PCMs. The simulated results show that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the discharging process, the thermal behaviour does not show any difference between horizontal and vertical systems. The results indicate that the horizontal orientation has superior thermal performance during the charging and in particular during part-load energy charging. The results also show that increasing the hot heat transfer fluid (HTF) inlet temperature substantially reduces the total charging time for both orientations. However, increasing the flow rate does not greatly affect the charging and discharging processes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 50 条
  • [1] Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials
    Adine, Hamid Ait
    El Qarnia, Hamid
    APPLIED MATHEMATICAL MODELLING, 2009, 33 (04) : 2132 - 2144
  • [2] Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit
    Yang, Xiaohu
    Wang, Xinyi
    Liu, Zhan
    Luo, Xilian
    Yan, Jinyue
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 236
  • [3] Comparative study between heat pipe and shell-and-tube thermal energy storage
    Miguel Maldonado, Jose
    Verez, David
    de Gracia, Alvaro
    Cabeza, Luisa F.
    APPLIED THERMAL ENGINEERING, 2021, 192
  • [4] THERMAL BEHAVIOR OF A SHELL-AND-TUBE HEAT STORAGE UNIT USING TWO PHASE CHANGE MATERIALS
    Adine, Hamid Ait
    El Qarnia, Hamid
    COMPUTATIONAL THERMAL SCIENCES, 2010, 2 (03): : 249 - 268
  • [5] Performance investigation and sensitivity analysis of shell-and-tube phase change material thermal energy storage
    Ren, Haoshan
    He, Ming
    Lin, Wenye
    Yang, Luwei
    Li, Weihua
    Ma, Zhenjun
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [6] Influence of immiscible intermediate fluid on melting process in a horizontal shell-and-tube phase change material storage
    Ajarostaghi, Seyed Soheil Mousavi
    Hosseinian-Sorkhi, Amin
    Arici, Muslum
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (20) : 11013 - 11027
  • [7] Effect of the circumferential and radial graded metal foam on horizontal shell-and-tube latent heat thermal energy storage unit
    Yang, Chao
    Xu, Yang
    Cai, Xiao
    Zheng, Zhang-Jing
    SOLAR ENERGY, 2021, 226 : 225 - 235
  • [8] A Periodic Horizontal Shell-And-Tube Structure as an Efficient Latent Heat Thermal Energy Storage Unit
    Woloszyn, Jerzy
    Szopa, Krystian
    ENERGIES, 2024, 17 (22)
  • [9] Thermal performance of shell and tube latent heat storage unit: Comparative assessment of horizontal and vertical orientation
    Mehta, Digant S.
    Solanki, Karan
    Rathod, Manish K.
    Banerjee, Jyotirmay
    JOURNAL OF ENERGY STORAGE, 2019, 23 : 344 - 362
  • [10] Numerical and Experimental Investigation of Shell-and-Tube Phase-Change Material Thermal Energy Storage Unit
    Sherer, Thomas H., II
    Joshi, Yogendra
    JOURNAL OF ELECTRONIC PACKAGING, 2016, 138 (03)