Active macroscale visible plasmonic nanorod self-assembled monolayer

被引:12
作者
Li, Yue [1 ,2 ,3 ]
Li, Jian [1 ,2 ,3 ]
Huang, Taixing [1 ,2 ,3 ]
Huang, Fei [1 ,2 ,3 ]
Qin, Jun [1 ,2 ,3 ]
Bi, Lei [1 ,2 ,3 ]
Xie, Jianliang [1 ,2 ,3 ]
Deng, Longjiang [1 ,2 ,3 ]
Peng, Bo [1 ,2 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Natl Engn Res Ctr Electromagnet Radiat Control Ma, Chengdu 610054, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
[3] Univ Elect Sci & Technol China, Minist Educ, Key Lab Multispectral Absorbing Mat & Struct, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-INSULATOR-TRANSITION; PHASE-TRANSITION; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; GOLD NANORODS; BROAD-BAND; INFRARED METAMATERIALS; RESONANCE; DISCONTINUITIES; NANOPARTICLES;
D O I
10.1364/PRJ.6.000409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Although plasmonic nanostructure has attracted widespread research interest in recent years, it is still a major challenge to realize large-scale active plasmonic nanostructure operation in the visible optical frequency. Herein, we demonstrate a heterostructure geometry comprising a centimeter-scale Au nanoparticle monolayer and VO2 films, in which the plasmonic peak is inversely tuned between 685 nm and 618 nm by a heating process since the refractive index will change when VO2 films undergo the transition between the insulating phase and the metallic phase. Simultaneously, the phase transition of VO2 films can be improved by plasmonic arrays due to plasmonic enhanced light absorption and the photothermal effect. The phase transition temperature for Au/VO2 films is lower than that for bare VO2 films and can decrease to room temperature under the laser irradiation. For light-induced phase transition of VO2 films, the laser power of Au/VO2 film phase transition is similar to 28.6% lower than that of bare VO2 films. Our work raises the feasibility to use active plasmonic arrays in the visible region. (c) 2018 Chinese Laser Press
引用
收藏
页码:409 / 416
页数:8
相关论文
共 68 条
[51]   Raman scattering in VO2 [J].
Schilbe, P .
PHYSICA B-CONDENSED MATTER, 2002, 316 :600-602
[52]   Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Index-Based Sensing Characteristics [J].
Shao, Lei ;
Ruan, Qifeng ;
Jiang, Ruibin ;
Wang, Jianfang .
SMALL, 2014, 10 (04) :802-811
[53]   Coherent control of Snell's law at metasurfaces [J].
Shi, Jinhui ;
Fang, Xu ;
Rogers, Edward T. F. ;
Plum, Eric ;
MacDonald, Kevin F. ;
Zheludev, Nikolay I. .
OPTICS EXPRESS, 2014, 22 (17) :21051-21060
[54]   Modulation of the gold particle-plasmon resonance by the metal-semiconductor transition of vanadium dioxide [J].
Suh, J. Y. ;
Donev, E. U. ;
Ferrara, D. W. ;
Tetz, K. A. ;
Feldman, L. C. ;
Haglund, R. F., Jr. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (05)
[55]   Colloidal dispersions of gold rods:: Synthesis and optical properties [J].
van der Zande, BMI ;
Böhmer, MR ;
Fokkink, LGJ ;
Schönenberger, C .
LANGMUIR, 2000, 16 (02) :451-458
[56]   Laser heating induced phase changes of VO2 crystals in air monitored by Raman spectroscopy [J].
Vilanova-Martinez, P. ;
Hernandez-Velasco, J. ;
Landa-Canovas, A. R. ;
Agullo-Rueda, F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 :122-125
[57]  
Wang Q, 2016, NAT PHOTONICS, V10, P60, DOI [10.1038/nphoton.2015.247, 10.1038/NPHOTON.2015.247]
[58]   Near-infrared active metamaterials and their applications in tunable surface-enhanced Raman scattering [J].
Wen, Xinglin ;
Zhang, Qing ;
Chai, Jianwei ;
Wong, Lai Mun ;
Wang, Shijie ;
Xiong, Qihua .
OPTICS EXPRESS, 2014, 22 (03) :2989-2995
[59]   Surface plasmon resonance of silver nanoparticles on vanadium dioxide [J].
Xu, G ;
Chen, Y ;
Tazawa, M ;
Jin, P .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (05) :2051-2056
[60]   Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing [J].
Xu, Xinlong ;
Peng, Bo ;
Li, Dehui ;
Zhang, Jun ;
Wong, Lai Mun ;
Zhang, Qing ;
Wang, Shijie ;
Xiong, Qihua .
NANO LETTERS, 2011, 11 (08) :3232-3238