Unsupervised Post-Nonlinear Unmixing of Hyperspectral Images Using a Hamiltonian Monte Carlo Algorithm

被引:66
作者
Altmann, Yoann [1 ]
Dobigeon, Nicolas [1 ]
Tourneret, Jean-Yves [1 ]
机构
[1] Univ Toulouse, F-31071 Toulouse, France
关键词
Hyperspectral imagery; unsupervised spectral unmixing; Hamiltonian Monte Carlo; post-nonlinear model; SPECTRAL MIXTURE ANALYSIS; ENDMEMBER VARIABILITY; MODEL;
D O I
10.1109/TIP.2014.2314022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are post-nonlinear functions of unknown pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using second-order polynomials leading to a polynomial post-nonlinear mixing model. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding an unsupervised nonlinear unmixing algorithm. Due to the large number of parameters to be estimated, an efficient Hamiltonian Monte Carlo algorithm is investigated. The classical leapfrog steps of this algorithm are modified to handle the parameter constraints. The performance of the unmixing strategy, including convergence and parameter tuning, is first evaluated on synthetic data. Simulations conducted with real data finally show the accuracy of the proposed unmixing strategy for the analysis of hyperspectral images.
引用
收藏
页码:2663 / 2675
页数:13
相关论文
共 50 条
[1]   NONLINEAR UNMIXING OF HYPERSPECTRAL IMAGES USING RADIAL BASIS FUNCTIONS AND ORTHOGONAL LEAST SQUARES [J].
Altmann, Y. ;
Dobigeon, N. ;
Tourneret, J-Y. ;
McLaughlin, S. .
2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, :1151-1154
[2]  
Altmann Y., 2013, 1 IRITENSEEIHT SIGN
[3]   Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes [J].
Altmann, Yoann ;
Dobigeon, Nicolas ;
McLaughlin, Steve ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (10) :2442-2453
[4]   Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery [J].
Altmann, Yoann ;
Halimi, Abderrahim ;
Dobigeon, Nicolas ;
Tourneret, Jean-Yves .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) :3017-3025
[5]   Hyperspectral Data Geometry-Based Estimation of Number of Endmembers Using p-Norm-Based Pure Pixel Identification Algorithm [J].
Ambikapathi, ArulMurugan ;
Chan, Tsung-Han ;
Chi, Chong-Yung ;
Keizer, Kannan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05) :2753-2769
[6]  
[Anonymous], 2003, INT S IND COMP AN BL
[7]  
[Anonymous], P IM SIGN PROC REM S
[8]  
[Anonymous], 2004, Springer Texts in Statistics
[9]  
[Anonymous], 2001, P 3 WORKSHOP INDEPEN
[10]  
[Anonymous], 2003, ENVI US GUID VERS 4