Area law for fixed points of rapidly mixing dissipative quantum systems

被引:26
作者
Brandao, Fernando G. S. L. [1 ,2 ]
Cubitt, Toby S. [2 ,3 ]
Lucia, Angelo [4 ]
Michalakis, Spyridon [5 ]
Perez-Garcia, David [4 ,6 ,7 ]
机构
[1] Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
[3] Univ Cambridge, DAMTP, Cambridge, England
[4] Univ Complutense Madrid, Dept Anal Matemat, Madrid, Spain
[5] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[6] Univ Complutense Madrid, IMI, Madrid, Spain
[7] ICMAT, Madrid 28049, Spain
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
EXPONENTIAL DECAY; SPIN SYSTEMS; CONTINUITY; ENTANGLEMENT; STABILITY; BOUNDS;
D O I
10.1063/1.4932612
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Continuity of quantum conditional information [J].
Alicki, R ;
Fannes, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :L55-L57
[2]  
[Anonymous], DIRICHLET FORMS
[3]  
Arad I., 2013, J STAT MECH THEORY E
[4]   Improved one-dimensional area law for frustration-free systems [J].
Arad, Itai ;
Landau, Zeph ;
Vazirani, Umesh .
PHYSICAL REVIEW B, 2012, 85 (19)
[5]   A sharp continuity estimate for the von Neumann entropy [J].
Audenaert, Koenraad M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (28) :8127-8136
[6]  
Barreiro JT, 2010, NAT PHYS, V6, P943, DOI [10.1038/nphys1781, 10.1038/NPHYS1781]
[7]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[8]   Exponential Decay of Correlations Implies Area Law [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :761-798
[9]  
Brandao FGSL, 2013, NAT PHYS, V9, P721, DOI [10.1038/nphys2747, 10.1038/NPHYS2747]
[10]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems