Persistent correlation of constrained colloidal motion

被引:43
作者
Franosch, Thomas [1 ,2 ]
Jeney, Sylvia [3 ]
机构
[1] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Ctr NanoSci, Dept Phys, D-80333 Munich, Germany
[3] Ecole Polytech Fed Lausanne, Inst Phys Matiere Complexe, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 03期
关键词
colloids; diffusion; hydrodynamics; radiation pressure; vortices; OPTICAL TWEEZERS; BROWNIAN-MOTION; VELOCITY FLUCTUATIONS; ALGEBRAIC DECAY; PLANE WALL; FLUID; FLOW; PARTICLE; SPHERE;
D O I
10.1103/PhysRevE.79.031402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex interplay due to the momentum relaxation of the particle, the vortex diffusion in the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap. We show that already a weak trapping force has a significant impact on the velocity autocorrelation function C(t)=< v(t)v(0)> at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results. Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas. The theoretical predictions are finally compared to recent experimental observations.
引用
收藏
页数:11
相关论文
共 39 条
[21]   EFFECT OF AN INFINITE-PLANE WALL ON THE MOTION OF A SPHERICAL BROWNIAN PARTICLE [J].
GOTOH, T ;
KANEDA, Y .
JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (06) :3193-3197
[22]   Algebraic decay of velocity fluctuations in a confined fluid [J].
Hagen, MHJ ;
Pagonabarraga, I ;
Lowe, CP ;
Frenkel, D .
PHYSICAL REVIEW LETTERS, 1997, 78 (19) :3785-3788
[23]  
Happel J., 1983, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, V1
[24]   Crossover in the slow decay of dynamic correlations in the Lorentz model [J].
Hoefling, Felix ;
Franosch, Thomas .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[25]   Anisotropic memory effects in confined colloidal diffusion [J].
Jeney, Sylvia ;
Lukic, Branimir ;
Kraus, Jonas A. ;
Franosch, Thomas ;
Forro, Laszlo .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[26]  
Landau L. D., 1987, FLUID MECH-SOV RES, V2nd, P89
[27]  
Lorentz H. A., 1907, ABHANDLUNGEN THEORET, V1, P23
[28]   Direct observation of nondiffusive motion of a Brownian particle -: art. no. 160601 [J].
Lukic, B ;
Jeney, S ;
Tischer, C ;
Kulik, AJ ;
Forró, L ;
Florin, EL .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[29]   Motion of a colloidal particle in an optical trap [J].
Lukic, Branimir ;
Jeney, Sylvia ;
Sviben, Zeljko ;
Kulik, Andrzej J. ;
Florin, Ernst-Ludwig ;
Forro, Laszlo .
PHYSICAL REVIEW E, 2007, 76 (01)
[30]   GENERALIZATION OF FAXENS THEOREM TO NONSTEADY MOTION OF A SPHERE THROUGH AN INCOMPRESSIBLE FLUID IN ARBITRARY FLOW [J].
MAZUR, P ;
BEDEAUX, D .
PHYSICA, 1974, 76 (02) :235-246