Extrapolation discontinuous Galerkin method for ultraparabolic equations

被引:10
作者
Marcozzi, Michael D. [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Ultraparabolic equations; Discontinuous Galerkin method; Extrapolation; Option pricing; Asian options; NUMERICAL-ANALYSIS; VALUATION;
D O I
10.1016/j.cam.2008.05.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ultraparabolic equations arise from the characterization of the performance index of stochastic optimal control relative to Ultradiffusion processes; they evidence multiple temporal variables and may be regarded as parabolic along characteristic directions. We consider theoretical and approximation aspects of a temporally order and step size adaptive extrapolation discontinuous Galerkin method coupled with a spatial Lagrange second-order finite element approximation for a prototype ultraparabolic problem. As an application, we Value a so-called Asian option from mathematical finance. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:679 / 687
页数:9
相关论文
共 28 条
[1]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[2]  
Akrivis G., 1994, Calcolo, V31, P179, DOI 10.1007/BF02575877
[3]   PARALLEL, ADAPTIVE FINITE-ELEMENT METHODS FOR CONSERVATION-LAWS [J].
BISWAS, R ;
DEVINE, KD ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :255-283
[4]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[5]  
Ciarlet PhilippeG., 1980, FINITE ELEMENT METHO
[6]   QUASIMONOTONE SCHEMES FOR SCALAR CONSERVATION-LAWS .1. [J].
COCKBURN, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1325-1341
[7]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[8]  
Cockburn B, 2000, LECT NOTES COMP SCI, V11, P3
[9]   RECENT PROGRESS IN EXTRAPOLATION METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
DEUFLHARD, P .
SIAM REVIEW, 1985, 27 (04) :505-535
[10]  
Deuflhard P., 2002, Scientific Computing with Ordinary Differential Equations