共 50 条
Atomistic and Coarse-Grained Modeling of the Adsorption of Graphene Nanoflakes at the Oil-Water Interface
被引:6
|作者:
Ardham, Vikram Reddy
[1
]
Leroy, Frederic
[1
]
机构:
[1] Tech Univ Darmstadt, Eduard Zintl Inst Anorgan & Phys Chem, Alarich Weiss Str 8, D-64287 Darmstadt, Hessen, Germany
关键词:
PICKERING EMULSIONS;
LIQUID INTERFACES;
SURFACE-TENSION;
CONTACT-ANGLE;
FREE-ENERGY;
SIMULATION;
OXIDE;
NANOPARTICLES;
WETTABILITY;
COMPOSITES;
D O I:
10.1021/acs.jpcb.7b11173
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The high interfacial tension between two immiscible liquids can provide the necessary driving force for the self-assembly of nanoparticles at the interface. Particularly, the interface between water and oily liquids (hydrocarbon chains) has been exploited to prepare networks of highly interconnected graphene sheets of only a few layers thickness, which are well suited for industrial applications. Studying such complex systems through particle-based simulations could greatly enhance the understanding of the various driving forces in action and could possibly give more control over the self-assembly process. However, the interaction potentials used in particle-based simulations are typically derived by reproducing bulk properties and are therefore not suitable for describing systems dominated by interfaces. To address this issue, we introduce a methodology to derive solid liquid interaction potentials that yield an accurate representation of the balance between interfacial interactions at atomistic and coarse-grained resolutions. Our approach is validated through its ability to lead to the adsorption of graphene nanoflakes at the interface between water and n-hexane. The development of accurate coarse-grained potentials that our approach enables will allow us to perform large-scale simulations to study the assembly of graphene nanoparticles at the interface between immiscible liquids. Our methodology is illustrated through a simulation of many graphene nanoflakes adsorbing at the interface.
引用
收藏
页码:2396 / 2407
页数:12
相关论文