An improved approximation ratio for the minimum linear arrangement problem

被引:44
作者
Feige, Uriel
Lee, James R. [1 ]
机构
[1] Inst Adv Studies, Dept Math, Princeton, NJ USA
[2] Microsoft Res, Redmond, WA USA
[3] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
approximation algorithms;
D O I
10.1016/j.ipl.2006.07.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We observe that combining the techniques of Arora, Rao, and Vazirani, with the rounding algorithm of Rao and Richa yields an O(root log n log log n)-approximation for the minimum-linear arrangement problem. This improves over the O (log n)-approximation of Rao and Richa. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:26 / 29
页数:4
相关论文
共 8 条
[1]  
[Anonymous], P 36 ANN ACM S THEOR
[2]  
ARORA S, 2005, 37 ACM STOC, P553
[3]  
Charikar M, 2006, P 17 ANN ACM SIAM S
[4]  
Chawla S, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P102
[5]   Divide-and-conquer approximation algorithms via spreading metrics [J].
Even, G ;
Naor, J ;
Rao, S ;
Schieber, B .
JOURNAL OF THE ACM, 2000, 47 (04) :585-616
[6]  
Klein P., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P682, DOI 10.1145/167088.167261
[7]  
Lee JR, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P92
[8]   New approximation techniques for some linear ordering problems [J].
Rao, S ;
Richa, AW .
SIAM JOURNAL ON COMPUTING, 2004, 34 (02) :388-404