Holstein polaron in a valley-degenerate two-dimensional semiconductor

被引:112
作者
Kang, Mingu [1 ,2 ]
Jung, Sung Won [1 ,3 ]
Shin, Woo Jong [1 ,3 ]
Sohn, Yeongsup [1 ,3 ]
Ryu, Sae Hee [1 ,3 ]
Kim, Timur K. [4 ]
Hoesch, Moritz [4 ,5 ]
Kim, Keun Su [1 ]
机构
[1] Yonsei Univ, Dept Phys, Seoul, South Korea
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Pohang Univ Sci & Technol, Dept Phys, Pohang, South Korea
[4] Diamond Light Source, Harwell Campus, Didcot, Oxon, England
[5] DESY, Hamburg, Germany
基金
新加坡国家研究基金会;
关键词
MOS2; SUPERCONDUCTIVITY; POLARIZATION;
D O I
10.1038/s41563-018-0092-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional (2D) crystals have emerged as a class of materials with tunable carrier density(1). Carrier doping to 2D semiconductors can be used to modulate many-body interactions(2) and to explore novel composite particles. The Holstein polaron is a small composite particle of an electron that carries a cloud of self-induced lattice deformation (or phonons)(3-5), which has been proposed to play a key role in high-temperature superconductivity(6) and carrier mobility in devices(7). Here we report the discovery of Holstein polarons in a surfacedoped layered semiconductor, MoS2, in which a puzzling 2D superconducting dome with the critical temperature of 12 K was found recently(8-11). Using a high-resolution band mapping of charge carriers, we found strong band renormalizations collectively identified as a hitherto unobserved spectral function of Holstein polarons(12-18). The short-range nature of electronphonon(e-ph) coupling in MoS2 can be explained by its valley degeneracy, which enables strong intervalley coupling mediated by acoustic phonons. The coupling strength is found to increase gradually along the superconducting dome up to the intermediate regime, which suggests a bipolaronic pairing in the 2D superconductivity.
引用
收藏
页码:676 / +
页数:6
相关论文
共 40 条
[1]  
Alexandrov A.S., 2007, Polarons in Advanced Materials
[2]   Light polarons and bipolarons for a highly inhomogeneous electron-boson coupling [J].
Berciu, M. ;
Sawatzky, G. A. .
EPL, 2008, 81 (05)
[3]   Holstein polaron [J].
Bonca, J ;
Trugman, SA ;
Batistic, I .
PHYSICAL REVIEW B, 1999, 60 (03) :1633-1642
[4]   First-principles theory of field-effect doping in transition-metal dichalcogenides: Structural properties, electronic structure, Hall coefficient, and electrical conductivity [J].
Brumme, Thomas ;
Calandra, Matteo ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2015, 91 (15)
[5]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Costanzo D, 2016, NAT NANOTECHNOL, V11, P339, DOI [10.1038/NNANO.2015.314, 10.1038/nnano.2015.314]
[7]   Holstein polaron: The effect of coupling to multiple-phonon modes [J].
Covaci, L. ;
Berciu, M. .
EPL, 2007, 80 (06)
[8]   Polaron Formation in the Presence of Rashba Spin-Orbit Coupling: Implications for Spintronics [J].
Covaci, Lucian ;
Berciu, Mona .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)
[9]   Angle-resolved photoemission studies of the cuprate superconductors [J].
Damascelli, A ;
Hussain, Z ;
Shen, ZX .
REVIEWS OF MODERN PHYSICS, 2003, 75 (02) :473-541
[10]   Electronic Structure of a Quasi-Freestanding MoS2 Monolayer [J].
Eknapakul, T. ;
King, P. D. C. ;
Asakawa, M. ;
Buaphet, P. ;
He, R. -H. ;
Mo, S. -K. ;
Takagi, H. ;
Shen, K. M. ;
Baumberger, F. ;
Sasagawa, T. ;
Jungthawan, S. ;
Meevasana, W. .
NANO LETTERS, 2014, 14 (03) :1312-1316