Observers for a non-Lipschitz triangular form

被引:17
作者
Bernard, Pauline [1 ]
Praly, Laurent [1 ]
Andrieu, Vincent [2 ,3 ]
机构
[1] PSL Res Univ, MINES ParisTech, Ctr Automat & Syst, Paris, France
[2] Univ Lyon 1, LAGEP CNRS, Villeurbanne, France
[3] CNRS, UMR 5007, LAGEP, Paris, France
关键词
Triangular observable form; High-gain observer; Finite-time observers; Homogeneous observers; Exact differentiators; Explicit Lyapunov functions; NONLINEAR-SYSTEMS; DESIGN;
D O I
10.1016/j.automatica.2017.04.054
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of designing an observer for triangular non locally Lipschitz dynamical systems. We show the convergence with an arbitrary small error of the classical high gain observer in presence of nonlinearities verifying some Holder-like condition. Also, for the case when this Holder condition is not verified, we propose a novel cascaded high gain observer. Under slightly more restrictive assumptions, we prove the convergence of a homogeneous observer and of its cascaded version with the help of an explicit Lyapunov function. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 27 条
[1]  
Andrieu V, 2006, IEEE DECIS CONTR P, P6395
[2]   High gain observers with updated gain and homogeneous correction terms [J].
Andrieu, V. ;
Praly, L. ;
Astolfi, A. .
AUTOMATICA, 2009, 45 (02) :422-428
[3]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[4]  
Barbot JP, 1996, IEEE DECIS CONTR P, P1489, DOI 10.1109/CDC.1996.572727
[5]  
Bernard P., 2016, IFAC S NONL CONTR SY
[6]  
Bernard P., 2016, AUTOMATICA UNPUB
[7]  
Besancon G., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P2904, DOI 10.1109/CDC.1999.831376
[8]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733
[9]  
Filippov A. F., DIFF EQUAT+, V18
[10]   OBSERVABILITY FOR ANY U(T) OF A CLASS OF NON-LINEAR SYSTEMS [J].
GAUTHIER, JP ;
BORNARD, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1981, 26 (04) :922-926