CONVEX CONCENTRATION INEQUALITIES FOR CONTINUOUS GAS AND STOCHASTIC DOMINATION

被引:2
|
作者
Ma Yutao [1 ,2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
continuous gas; Gibbs measure; convex concentration inequality; Ito's formula; stochastic domination; SPECTRAL GAP;
D O I
10.1016/S0252-9602(09)60118-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the continuous gas in a bounded domain A of R+ or R-d described by a Gibbsian probability measure mu(eta)(Lambda) associated with a pair interaction phi, the inverse temperature beta, the activity z > 0, and the boundary condition eta. Define F = integral f(s)omega(Lambda) (ds). Applying the generalized Ito's formula for forward-backward martingales (see Klein et al. [5]), we obtain convex concentration inequalities for F with respect to the Gibbs measure mu(eta)(Lambda). On the other hand, by FKG inequality on the Poisson space, we also give a new simple argument for the stochastic domination for the Gibbs measure.
引用
收藏
页码:1461 / 1468
页数:8
相关论文
共 42 条
  • [1] CONVEX CONCENTRATION INEQUALITIES FOR CONTINUOUS GAS AND STOCHASTIC DOMINATION
    马宇韬
    ActaMathematicaScientia, 2009, 29 (05) : 1461 - 1468
  • [2] Spectral gap and convex concentration inequalities for birth-death processes
    Liu, Wei
    Ma, Yutao
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (01): : 58 - 69
  • [3] Dynamic approach to a stochastic domination: The FKG and Brascamp-Lieb inequalities
    Funaki, Tadahisa
    Toukairin, Kou
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1915 - 1922
  • [4] Refinements of stochastic domination
    Erik I. Broman
    Olle Häggström
    Jeffrey E. Steif
    Probability Theory and Related Fields, 2006, 136 : 587 - 603
  • [5] Refinements of stochastic domination
    Broman, Erik I.
    Haggstrom, Olle
    Steif, Jeffrey E.
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (04) : 587 - 603
  • [6] Stochastic domination and comb percolation
    Holroyd, Alexander E.
    Martin, James B.
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 16
  • [7] AN ALTERNATIVE CONDITION FOR STOCHASTIC DOMINATION
    Hosaka, Kenshi
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) : 1198 - 1200
  • [8] Refined convex Sobolev inequalities
    Arnold, A
    Dolbeault, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (02) : 337 - 351
  • [9] Universal Domination and Stochastic Domination-an Improved lower Bound for the Dimensionality
    Lu, Chang-Yu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (23) : 4276 - 4286
  • [10] Stochastic domination for iterated convolutions and catalytic majorization
    Aubrun, Guillaume
    Nechita, Ion
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 611 - 625