Extension of interface coupling to general Lagrangian systems

被引:4
作者
Ambroso, A. [4 ]
Chalons, C. [3 ]
Coquel, F. [1 ,2 ]
Godlewski, E. [1 ,2 ]
Lagoutiere, F. [3 ]
Raviart, P. -A. [1 ,2 ]
Seguin, N. [1 ,2 ]
机构
[1] Univ Paris 06, UMR 7598 LJLL, F-75005 Paris, France
[2] CNRS, UMR 7598 LJLL, F-75005 Paris, France
[3] Univ Paris 07, UMR 7598 LJLL, F-75005 Paris, France
[4] CEA Saclay, F-91191 Gif Sur Yvette, France
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS | 2006年
关键词
D O I
10.1007/978-3-540-34288-5_84
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the coupling of two gas dynamics systems in Lagrangian coordinates at the interface x = 0. The coupling condition was formalized in [9, 10] by requiring that two boundary value problems should be well-posed, and it yields as far as possible the continuity of the solution at the interface. In this work we prove that we may choose the variables we transmit and extend the theory to Lagrangian systems of different sizes. The coupling condition is expressed in terms of Riemann problems. This is well suited for the numerical methods we are implementing and adapted to Lagrangian systems since the sign of the wave speeds is known, which enables us to solve the coupled Riemann problem.
引用
收藏
页码:852 / +
页数:3
相关论文
共 10 条
[1]   Computations of compressible multifluids [J].
Abgrall, R ;
Karni, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :594-623
[2]  
AMBROSO A, 2005, 17 C FRANC MEC SEPT
[3]  
AMBROSO A, 2005, NURETH 11 INT TOP M
[4]  
AMBROSO A, UNPUB COUPLING GEN L
[5]  
AMBROSO A, 2005, FVCA 4 P HERM SCI, P483
[6]  
Després B, 2001, NUMER MATH, V89, P99, DOI 10.1007/s002110000242
[7]   BOUNDARY-CONDITIONS FOR NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS [J].
DUBOIS, F ;
LEFLOCH, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :93-122
[8]   The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems [J].
Godlewski, E ;
Le Thanh, KC ;
Raviart, PA .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (04) :649-692
[9]  
Godlewski E, 2004, NUMER MATH, V97, P81, DOI [10.1007/s00211-002-0438-5, 10.1007/s00211-003-0438-5]
[10]  
GODLEWSKI E, 1996, APPL MATH SCI, V118