Using FPGAs to Accelerate HPC and Data Analytics on Intel-Based Systems

被引:0
|
作者
Steinke, Thomas [1 ]
Suarez, Estela [2 ]
Boku, Taisuke [3 ]
Kumar, Nalini [4 ]
Martin, David E. [5 ]
机构
[1] Zuse Inst Berlin ZIB, Takustr 7, D-14195 Berlin, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr JSC, Julich, Germany
[3] Univ Tsukuba, Tsukuba, Ibaraki 3058577, Japan
[4] Intel Corp, Santa Clara, CA 95054 USA
[5] Argonne Natl Lab, Argonne, IL 60657 USA
来源
HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL WORKSHOPS | 2020年 / 11887卷
关键词
FPGA; Reconfigurable computing; High-performance computing; Data analytics; Machine learning; Intel FPGA ecosystem;
D O I
10.1007/978-3-030-34356-9_42
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
FPGAs can improve performance, energy efficiency and throughput by boosting computation, I/O and communication operations in HPC, data analytics (DA), and machine learning (ML) work-loads and thus complement general-purpose CPUs and GPUs. Recent innovations in hardware and software technologies make FPGAs increasingly attractive for HPC and DA workloads. This first FPGA-focused workshop organized by the IXPUG community gathered experts in the design, programming and usage of reconfigurable systems for HPC and DA workloads to share there experiences with the community.
引用
收藏
页码:561 / 566
页数:6
相关论文
共 50 条
  • [1] Towards Sustainability and Energy Efficiency Using Data Analytics for HPC Data Center
    Chinnici, Andrea
    Ahmadzada, Eyvaz
    Kor, Ah-Lian
    De Chiara, Davide
    Dominguez-Diaz, Adrian
    de Marcos Ortega, Luis
    Chinnici, Marta
    ELECTRONICS, 2024, 13 (17)
  • [2] Using data analytics to accelerate biopharmaceutical process scale-up
    Facco, Pierantonio
    Zomer, Simeone
    Rowland-Jones, Ruth C.
    Marsh, Douglas
    Diaz-Fernandez, Paloma
    Finka, Gary
    Bezzo, Fabrizio
    Barolo, Massimiliano
    BIOCHEMICAL ENGINEERING JOURNAL, 2020, 164
  • [3] Energy-Efficient Acceleration of Big Data Analytics Applications Using FPGAs
    Neshatpour, Katayoun
    Malik, Maria
    Ghodrat, Mohammad Ali
    Sasan, Avesta
    Homayoun, Houman
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 115 - 123
  • [4] A Big Data Analytics Framework for HPC Log Data: Three Case Studies Using the Titan Supercomputer Log
    Park, Byung H.
    Hui, Yawei
    Boehm, Swen
    Ashraf, Rizwan A.
    Layton, Christopher
    Engelmann, Christian
    2018 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2018, : 571 - 579
  • [5] In-depth FPGA accelerator performance evaluation with single node benchmarks from the HPC challenge benchmark suite for Intel and Xilinx FPGAs using OpenCL
    Meyer, Marius
    Kenter, Tobias
    Plessl, Christian
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 160 : 79 - 89
  • [6] Migration from HPC-based Data Processing Systems to Cloud-computing based Data Mining Systems
    Ni, Jun
    Chen, Ying
    Sha, Jie
    Zhang, Minghuan
    2015 EIGHTH INTERNATIONAL CONFERENCE ON INTERNET COMPUTING FOR SCIENCE AND ENGINEERING (ICICSE), 2015, : 181 - 187
  • [7] INTEGRATING RULE-BASED SYSTEMS AND DATA ANALYTICS TOOLS USING OPEN STANDARD PMML
    Li, Yunpeng
    Roy, Utpal
    Lee, Y. Tina
    Rachuri, Sudarsan
    INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 1A, 2016,
  • [8] A Data Analytics Approach for Game-based Physical Therapy Systems
    Salama, Maha
    Kassem, Gamal
    DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021), 2021,
  • [9] Healthcare Monitoring using Machine Learning Based Data Analytics
    Janani, S. R.
    Subramanian, R.
    Karthik, S.
    Vimalarani, C.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (01)
  • [10] Using Pattern-Models to Guide SSD Deployment for Big Data Applications in HPC Systems
    Chen, Junjie
    Roth, Philip C.
    Chen, Yong
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,