Regularity of flat level sets in phase transitions

被引:194
作者
Savin, Ovidiu [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
关键词
DE-GIORGI; CONJECTURE; EQUATIONS; SYMMETRY; PROPERTY;
D O I
10.4007/annals.2009.169.41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider local minimizers of the Ginzburg-Landau energy functional integral 1/2 vertical bar del u vertical bar(2) + 1/4(1-u(2))(2)dx and prove that, if the 0 level set is included in a flat cylinder then, in the interior, it is included in a flatter cylinder. As a consequence we prove a conjecture of De Giorgi which states that level sets of global solutions of Delta u = u(3) - u such that vertical bar u vertical bar <= 1, partial derivative(n)u > 0, lim(xn ->+/-infinity) u(x', x(n)) = +/- 1 are hyperplanes in dimension n <= 8.
引用
收藏
页码:41 / 78
页数:38
相关论文
共 23 条
[1]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[2]  
ALBERTI G, 2000, J AM MATH SOC, V13, P725
[3]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO
[4]  
2-U
[5]  
Berestycki H, 2000, DUKE MATH J, V103, P375
[6]  
Berestycki H., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V25, P69
[7]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[8]   A GRADIENT BOUND FOR ENTIRE SOLUTIONS OF QUASI-LINEAR EQUATIONS AND ITS CONSEQUENCES [J].
CAFFARELLI, L ;
GAROFALO, N ;
SEGALA, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (11) :1457-1473
[9]  
CAFFARELLI L, 1994, COMMUN PUR APPL MATH, V47, P1147
[10]  
CAFFARELLI L., 1993, DIFFERENTIAL INTEGRA, V6, P1, DOI DOI 10.57262/DIE/1371214975