Quadratic realizability of palindromic matrix polynomials: the real case

被引:0
作者
Perovic, Vasilije [1 ]
Mackey, D. Steven [2 ]
机构
[1] Univ Rhode Isl, Dept Math & Appl Math Sci, Kingston, RI 02881 USA
[2] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
基金
美国国家科学基金会;
关键词
Matrix polynomials; real quadratic realizability; elementary divisors; minimal indices; T-palindromic; inverse problem; EIGENVALUE PROBLEMS; CANONICAL-FORMS; MINIMAL BASES; EQUIVALENCE; COMPLEX;
D O I
10.1080/03081087.2022.2041143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = (L-1, L-2) be a list consisting of structural data for a matrix polynomial; here L-1 is a sublist consisting of powers of irreducible (monic) scalar polynomials over the field R, and L-2 is a sublist of nonnegative integers. For an arbitrary such L, we give easy-to-check necessary and sufficient conditions for L to be the list of elementary divisors and minimal indices of some real T-palindromic quadratic matrix polynomial. For a list L satisfying these conditions, we show how to explicitly build a real T-palindromic quadratic matrix polynomial having L as its structural data; that is, we provide a T-palindromic quadratic realization of L over R. A significant feature of our construction differentiates it from related work in the literature; the realizations constructed here are direct sums of blocks with low bandwidth, that transparently display the spectral and singular structural data in the original list L.
引用
收藏
页数:45
相关论文
共 50 条
  • [21] Modifications of Newton's method for even-grade palindromic polynomials and other twined polynomials
    Gemignani, Luca
    Noferini, Vanni
    NUMERICAL ALGORITHMS, 2012, 61 (02) : 315 - 329
  • [22] Computing the distance to continuous-time instability of quadratic matrix polynomials
    Malyshev, Alexander
    Sadkane, Miloud
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 149 - 165
  • [23] RECOVERY OF EIGENVECTORS AND MINIMAL BASES OF MATRIX POLYNOMIALS FROM GENERALIZED FIEDLER LINEARIZATIONS
    Bueno, Maria I.
    de Teran, Fernando
    Dopico, Froilan M.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 463 - 483
  • [24] Root polynomials and their role in the theory of matrix polynomials
    Dopico, Froilan M.
    Noferini, Vanni
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 584 : 37 - 78
  • [25] Triangularizing matrix polynomials
    Taslaman, Leo
    Tisseur, Francoise
    Zaballa, Ion
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) : 1679 - 1699
  • [26] Fiedler companion linearizations for rectangular matrix polynomials
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) : 957 - 991
  • [27] Updating ☆-palindromic quadratic systems with no spill-over
    Zhao, Kang
    Cheng, Lizhi
    Liao, Anping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05) : 5587 - 5608
  • [28] On the simultaneous refinement of the zeros of H-palindromic polynomials
    Brugiapaglia, Simone
    Gemignani, Luca
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 293 - 303
  • [29] LINEARIZATIONS OF HERMITIAN MATRIX POLYNOMIALS PRESERVING THE SIGN CHARACTERISTIC
    Bueno, Maria I.
    Dopico, Froilan M.
    Furtado, Susana
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (01) : 249 - 272
  • [30] LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 371 - 402