Quadratic realizability of palindromic matrix polynomials: the real case

被引:0
作者
Perovic, Vasilije [1 ]
Mackey, D. Steven [2 ]
机构
[1] Univ Rhode Isl, Dept Math & Appl Math Sci, Kingston, RI 02881 USA
[2] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
基金
美国国家科学基金会;
关键词
Matrix polynomials; real quadratic realizability; elementary divisors; minimal indices; T-palindromic; inverse problem; EIGENVALUE PROBLEMS; CANONICAL-FORMS; MINIMAL BASES; EQUIVALENCE; COMPLEX;
D O I
10.1080/03081087.2022.2041143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L = (L-1, L-2) be a list consisting of structural data for a matrix polynomial; here L-1 is a sublist consisting of powers of irreducible (monic) scalar polynomials over the field R, and L-2 is a sublist of nonnegative integers. For an arbitrary such L, we give easy-to-check necessary and sufficient conditions for L to be the list of elementary divisors and minimal indices of some real T-palindromic quadratic matrix polynomial. For a list L satisfying these conditions, we show how to explicitly build a real T-palindromic quadratic matrix polynomial having L as its structural data; that is, we provide a T-palindromic quadratic realization of L over R. A significant feature of our construction differentiates it from related work in the literature; the realizations constructed here are direct sums of blocks with low bandwidth, that transparently display the spectral and singular structural data in the original list L.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Quadratic realizability of palindromic matrix polynomials: the real case
    Perovic, Vasilije
    Mackey, D. Steven
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (05) : 797 - 841
  • [2] Quadratic realizability of palindromic matrix polynomials
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    Perovic, Vasilije
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 567 : 202 - 262
  • [3] Palindromic companion forms for matrix polynomials of odd degree
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) : 1464 - 1480
  • [4] SMITH FORMS OF PALINDROMIC MATRIX POLYNOMIALS
    Mackey, D. Steven
    Mackey, Niloufer
    Mehl, Christian
    Mehrmann, Volker
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 53 - 91
  • [5] CANONICAL STRUCTURES FOR PALINDROMIC MATRIX POLYNOMIALS
    Lancaster, Peter
    Prells, Uwe
    Rodman, Leiba
    OPERATORS AND MATRICES, 2007, 1 (04): : 469 - 489
  • [6] Palindromic matrix polynomials, matrix functions and integral representations
    Iannazzo, Bruno
    Meini, Beatrice
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) : 174 - 184
  • [7] Palindromic Linearizations of Palindromic Matrix Polynomials of Odd Degree Obtained from Fiedler-Like Pencils
    Das, Ranjan Kumar
    Alam, Rafikul
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 865 - 891
  • [8] TRIANGULARIZING QUADRATIC MATRIX POLYNOMIALS
    Tisseur, Francoise
    Zaballa, Ion
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 312 - 337
  • [9] Diagonalization of quadratic matrix polynomials
    Zuniga Anaya, Juan Carlos
    SYSTEMS & CONTROL LETTERS, 2010, 59 (02) : 105 - 113
  • [10] Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree
    Huang, Tsung-Ming
    Lin, Wen-Wei
    Su, Wei-Shuo
    NUMERISCHE MATHEMATIK, 2011, 118 (04) : 713 - 735