A splitting principle for modular group representations

被引:2
作者
Symonds, P [1 ]
机构
[1] UMIST, Dept Math, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1112/S0024609302001169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author of this paper has shown previously how a complex representation of a finite group can be split into a virtual sum of representations induced from one-dimensional representations of subgroups in a natural way (sometimes known as explicit Brauer induction). Here the modular case is treated, yielding an analogous result at the level of Brauer characters in general, and in the Green ring for trivial source modules.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 17 条
[1]   A general theory of canonical induction formulae [J].
Boltje, R .
JOURNAL OF ALGEBRA, 1998, 206 (01) :293-343
[2]  
BOLTJE R, 1990, ASTERISQUE, P31
[3]  
BOLTJE R., 1998, GROUP REPRESENTATION, V63, P7, DOI DOI 10.1090/PSPUM/063/1603127
[5]  
Curtis CW., 1987, METHODS REPRESENTATI, VII
[6]  
Deligne P., 1973, Lecture Notes in Math., V349, P501
[7]  
DIECK TT, 1987, TRANSFORMATION GROUP
[8]  
ILLUSIE L, 1981, ASTERISQUE, P161
[9]  
MASSEY WS, 1987, MONOGR TXB PURE APPL
[10]  
MILNE JS, 1980, PRINCETON MATH SER, V33