Invariance principles for deconvolving kernel density estimation for stationary sequences of random variables

被引:5
作者
Fotopoulos, SB
机构
[1] Washington State Univ, Dept Management & Decis Sci, Pullman, WA 99164 USA
[2] Washington State Univ, Program Stat, Pullman, WA 99164 USA
[3] Univ Patras, Dept Math, GR-26110 Patras, Greece
关键词
kernel density estimators; deconvolution; Fourier transformation; weak and strong convergence;
D O I
10.1016/S0378-3758(99)00162-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The deviation between the empirical process of the kernel-type deconvoluted estimated density and a Gaussian process of a stationary sequence in properly sup-norm metrics is studied. We propose a general method to obtain both weak and strong convergence results when the underlying sequence is strictly stationary alpha-mixing. The study of these approximations is conducted for both ordinary and super smooth errors. Further, by investigating the sup-norm distance of the empirical kernel-type deconvoluted process from its Gaussian counterpart, we find a rate of convergence of order n(-v)h(-(2+beta)), for some nu > 0 and beta > 1. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 38 条
  • [1] ALMOST SURE INVARIANCE PRINCIPLE FOR EMPIRICAL DISTRIBUTION FUNCTION OF MIXING RANDOM-VARIABLES
    BERKES, I
    PHILIPP, W
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 41 (02): : 115 - 137
  • [2] Billingsley P, 1968, CONVERGE PROBAB MEAS
  • [3] BRADLEY RC, 1986, BASIC PROPERTIES STR
  • [4] OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY
    CARROLL, RJ
    HALL, P
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) : 1184 - 1186
  • [5] CHIRISOV D, 1964, MATH STAT PROBABIL, V6, P147
  • [6] CSORGO M, 1987, B AM MATH SOC, V17, P186
  • [7] CsoRGo M., 1993, Weighted approximations in probability and statistics
  • [8] DAVYDOV YA, 1973, THEOR PROBAB APPL, V28, P313
  • [9] CONSISTENT DECONVOLUTION IN DENSITY-ESTIMATION
    DEVROYE, L
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 235 - 239
  • [10] HEURISTIC APPROACH TO THE KOLMOGOROV-SMIRNOV THEOREMS
    DOOB, JL
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (03): : 393 - 403