Mathematical modeling of lithium-ion and nickel battery systems

被引:267
作者
Gomadam, PM
Weidner, JW [1 ]
Dougal, RA
White, RE
机构
[1] Univ S Carolina, Ctr Electrochem Engn, Dept Chem Engn, Columbia, SC 29208 USA
[2] Univ S Carolina, Dept Elect Engn, Columbia, SC 29208 USA
关键词
simulations; impedance; porous electrode theory; continuum models;
D O I
10.1016/S0378-7753(02)00190-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A review of mathematical models of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single electrodes, full cells and batteries (sets of full cells) under a variety of operating conditions (e.g. constant current discharge, pulse discharge, impedance and cyclic voltammetry). Models of nickel battery systems are reviewed that simulate the performance of full cells, as well as the behavior of the nickel hydroxide active material. The ability of these models to predict reality is demonstrated by frequent comparisons with experimental data. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 50 条
[41]   Lithium-ion battery multi-scale modeling coupled with simplified electrochemical model and kinetic Monte Carlo model [J].
Yu, Hanqing ;
Zhang, Lisheng ;
Wang, Wentao ;
Yang, Kaiyi ;
Zhang, Zhengjie ;
Liang, Xiang ;
Chen, Siyan ;
Yang, Shichun ;
Li, Junfu ;
Liu, Xinhua .
ISCIENCE, 2023, 26 (09)
[42]   In Situ Replenishment of Formation Cycle Lithium-Ion Loss for Enhancing Battery Life [J].
Palanisamy, Manikandan ;
Parekh, Mihit H. ;
Pol, Vilas G. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
[43]   Enhanced Lithium-ion battery model considering critical surface charge behavior [J].
Xiong, Rui ;
Huang, Jintao ;
Duan, Yanzhou ;
Shen, Weixiang .
APPLIED ENERGY, 2022, 314
[44]   Sensorless Temperature Estimation of Lithium-Ion Battery Based on Broadband Impedance Measurements [J].
Du, Xinghao ;
Meng, Jinhao ;
Peng, Jichang ;
Zhang, Yingmin ;
Liu, Tianqi ;
Teodorescu, Remus .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (09) :10101-10105
[45]   Lithium-ion power battery internal resistance model and its experiment study [J].
Wei, Xuezhe ;
Yang, Jing ;
Liu, Yaofeng ;
Zhu, Jiangong .
Tongji Daxue Xuebao/Journal of Tongji University, 2015, 43 (10) :1542-1549
[46]   Lithium-ion battery physics and statistics-based state of health model [J].
Crawford, Alasdair J. ;
Choi, Daiwon ;
Balducci, Patrick J. ;
Subramanian, Venkat R. ;
Viswanathan, Vilayanur V. .
JOURNAL OF POWER SOURCES, 2021, 501 (501)
[47]   Asymptotic reduction and homogenization of a thermo-electrochemical model for a lithium-ion battery [J].
Hennessy, Matthew G. ;
Moyles, Iain R. .
APPLIED MATHEMATICAL MODELLING, 2020, 80 (80) :724-754
[48]   Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes [J].
Trembacki, Bradley L. ;
Mistry, Aashutosh N. ;
Noble, David R. ;
Ferraro, Mark E. ;
Mukherjee, Partha P. ;
Roberts, Scott A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (13) :E725-E736
[49]   An electrochemical-thermal model of lithium-ion battery and state of health estimation [J].
Wang, Dafang ;
Zhang, Qi ;
Huang, Huanqi ;
Yang, Bowen ;
Dong, Haosong ;
Zhang, Jingming .
JOURNAL OF ENERGY STORAGE, 2022, 47
[50]   Fault diagnosis technology overview for lithium-ion battery energy storage station [J].
Li, Bin ;
Chen, Peiyu ;
Li, Guanzheng ;
Li, Chao ;
Zeng, Kaidi ;
Liu, Bin ;
Li, Xuebin ;
Huo, Qidi ;
Jiao, Kui ;
Wang, Chengshan .
IET ENERGY SYSTEMS INTEGRATION, 2024, 6 :684-701