Parameters estimation for a new anomalous thermal diffusion model in layered media

被引:6
作者
Chen, S. [1 ]
Jiang, X. Y. [2 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu 611130, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomalous heat conduction; Multilayered material; The balance method; Parameters identification; Nonlinear conjugate gradient method; HEAT-CONDUCTION; NUMERICAL APPROXIMATION; INVERSE PROBLEM; EQUATION;
D O I
10.1016/j.camwa.2016.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an inverse problem of parameters estimation for a new time fractional heat conduction model in multilayered medium. In the anomalous thermal diffusion model, we consider the fractional derivative boundary conditions and the conduction obeys modified Fourier law with Riemann-Liouville fractional operator of different order in each layer. For the direct problem, we construct an effective finite difference scheme by using the balance method to deal with the discontinuity interface. For the inverse problem, we apply the nonlinear conjugate gradient (NCG) method with different conjugated coefficients to simultaneously identify the fractional exponent in each layer. Finally, we use experimental data to verify the effectiveness of the proposed technique, in which the Jacobian matrix is achieved by a derivative-free approach. We analyze the sensitivity coefficients and the convergence behaviors of the NCG algorithm. The simulation results confirm that the fractional heat conduction model with estimated parameters gives a more accurate fitting than the classical counterpart and the NCG method is a feasible and effective technique for the inverse problem of parameters estimation in fractional model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1172 / 1181
页数:10
相关论文
共 50 条
  • [41] Simultaneous estimation of boundary conditions and material model parameters
    van Rensburg, Gerhardus J. Jansen
    Kok, Schalk
    Wilke, Daniel N.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (02) : 701 - 717
  • [42] Simultaneous estimation of controllable parameters in a living tissue during thermal therapy
    Jalali, Arash
    Ayani, Mohammad-Bagher
    Baghban, Mojtaba
    JOURNAL OF THERMAL BIOLOGY, 2014, 45 : 37 - 42
  • [43] ESTIMATION OF RADIATIVE PARAMETERS IN PARTICIPATING MEDIA USING SHUFFLED FROG LEAPING ALGORITHM
    Ren, Ya-Tao
    Qi, Hong
    Lew, Zhong-Yuan
    Wang, Wei
    Ruan, Li-Ming
    THERMAL SCIENCE, 2017, 21 (06): : 2287 - 2297
  • [44] Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model
    Liu, Lin
    Yang, Shuo
    Feng, Libo
    Xu, Qian
    Zheng, Liancun
    Liu, Fawang
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (08)
  • [45] Fractional anomalous convection diffusion in comb structure with a non-Fick constitutive model
    Liu, Lin
    Zheng, Liancun
    Chen, Yanping
    Liu, Fawang
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [46] INVERSE PROBLEM FOR THE ESTIMATION OF SKIN CANCEROUS REGION PARAMETERS BY THERMAL ANALYSIS
    Manuel Luna, Jose
    Romero-Mendez, Ricardo
    Hernandez-Guerrero, Abel
    Elizalde-Blancas, Francisco
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2011, VOL 2, 2012, : 361 - +
  • [47] Anomalous diffusion in comb model with fractional dual-phase-lag constitutive relation
    Liu, Lin
    Zheng, Liancun
    Chen, Yanping
    Liu, Fawang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (02) : 245 - 256
  • [48] Development and Generalization of the Method of Reflections in Problems of Electrostatics and Thermal Conductivity of Plane-Layered Media
    Petrin, A. B.
    TECHNICAL PHYSICS, 2024, 69 (07) : 2079 - 2092
  • [49] A fractional diffusion model for single-well simulation in geological media
    Obembe, Abiola D.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 191
  • [50] An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media
    Feng, Libo
    Turner, Ian
    Perre, Patrick
    Burrage, Kevin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 92