Predicting the frequencies of drug side effects

被引:76
作者
Galeano, Diego [1 ,2 ]
Li, Shantao [3 ,4 ]
Gerstein, Mark [5 ,6 ,7 ]
Paccanaro, Alberto [1 ,2 ]
机构
[1] Royal Holloway Univ London, Dept Comp Sci, Ctr Syst & Synthet Biol, Egham Hill, Egham, Surrey, England
[2] Fundacao Getulio Vargas, Sch Appl Math, Rio De Janeiro, Brazil
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[6] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[7] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06520 USA
基金
美国国家科学基金会; 英国生物技术与生命科学研究理事会;
关键词
GAMMA-SECRETASE INHIBITOR; CLINICAL-TRIALS; HOSPITALIZED-PATIENTS; MUTATIONAL PROCESSES; SAFETY; ASSOCIATIONS; ALGORITHMS; SIGNATURES; EVENTS;
D O I
10.1038/s41467-020-18305-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A central issue in drug risk-benefit assessment is identifying frequencies of side effects in humans. Currently, frequencies are experimentally determined in randomised controlled clinical trials. We present a machine learning framework for computationally predicting frequencies of drug side effects. Our matrix decomposition algorithm learns latent signatures of drugs and side effects that are both reproducible and biologically interpretable. We show the usefulness of our approach on 759 structurally and therapeutically diverse drugs and 994 side effects from all human physiological systems. Our approach can be applied to any drug for which a small number of side effect frequencies have been identified, in order to predict the frequencies of further, yet unidentified, side effects. We show that our model is informative of the biology underlying drug activity: individual components of the drug signatures are related to the distinct anatomical categories of the drugs and to the specific drug routes of administration.
引用
收藏
页数:14
相关论文
共 59 条
  • [1] Aggarwal C., 2016, RECOMMENDER SYSTEMS, DOI DOI 10.1007/978-3-319-29659-3
  • [2] Signatures of mutational processes in human cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Aparicio, Samuel A. J. R.
    Behjati, Sam
    Biankin, Andrew V.
    Bignell, Graham R.
    Bolli, Niccolo
    Borg, Ake
    Borresen-Dale, Anne-Lise
    Boyault, Sandrine
    Burkhardt, Birgit
    Butler, Adam P.
    Caldas, Carlos
    Davies, Helen R.
    Desmedt, Christine
    Eils, Roland
    Eyfjord, Jorunn Erla
    Foekens, John A.
    Greaves, Mel
    Hosoda, Fumie
    Hutter, Barbara
    Ilicic, Tomislav
    Imbeaud, Sandrine
    Imielinsk, Marcin
    Jaeger, Natalie
    Jones, David T. W.
    Jones, David
    Knappskog, Stian
    Kool, Marcel
    Lakhani, Sunil R.
    Lopez-Otin, Carlos
    Martin, Sancha
    Munshi, Nikhil C.
    Nakamura, Hiromi
    Northcott, Paul A.
    Pajic, Marina
    Papaemmanuil, Elli
    Paradiso, Angelo
    Pearson, John V.
    Puente, Xose S.
    Raine, Keiran
    Ramakrishna, Manasa
    Richardson, Andrea L.
    Richter, Julia
    Rosenstiel, Philip
    Schlesner, Matthias
    Schumacher, Ton N.
    Span, Paul N.
    Teague, Jon W.
    [J]. NATURE, 2013, 500 (7463) : 415 - +
  • [3] Deciphering Signatures of Mutational Processes Operative in Human Cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Campbell, Peter J.
    Stratton, Michael R.
    [J]. CELL REPORTS, 2013, 3 (01): : 246 - 259
  • [4] An Algorithmic Framework for Predicting Side Effects of Drugs
    Atias, Nir
    Sharan, Roded
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (03) : 207 - 218
  • [5] A curated and standardized adverse drug event resource to accelerate drug safety research
    Banda, Juan M.
    Evans, Lee
    Vanguri, Rami S.
    Tatonetti, Nicholas P.
    Ryan, Patrick B.
    Shah, Nigam H.
    [J]. SCIENTIFIC DATA, 2016, 3
  • [6] INCIDENCE OF ADVERSE DRUG EVENTS AND POTENTIAL ADVERSE DRUG EVENTS - IMPLICATIONS FOR PREVENTION
    BATES, DW
    CULLEN, DJ
    LAIRD, N
    PETERSEN, LA
    SMALL, SD
    SERVI, D
    LAFFEL, G
    SWEITZER, BJ
    SHEA, BF
    HALLISEY, R
    VANDERVLIET, M
    NEMESKAL, R
    LEAPE, LL
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1995, 274 (01): : 29 - 34
  • [7] Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records
    Bean, Daniel M.
    Wu, Honghan
    Dzahini, Olubanke
    Broadbent, Matthew
    Stewart, Robert
    Dobson, Richard J. B.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Drug-induced arrhythmia: pharmacogenomic prescribing?
    Behr, Elijah R.
    Roden, Dan
    [J]. EUROPEAN HEART JOURNAL, 2013, 34 (02) : 89 - +
  • [9] Predicting protein associations with long noncoding RNAs
    Bellucci, Matteo
    Agostini, Federico
    Masin, Marianela
    Tartaglia, Gian Gaetano
    [J]. NATURE METHODS, 2011, 8 (06) : 444 - 445
  • [10] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300