Lagrange multipliers theorem and saddle point optimality criteria in mathematical programming

被引:10
作者
Duc, Duong Minh [1 ]
Hoang, Nguyen Dinh [1 ]
Nguyen, Lam Hoang [1 ]
机构
[1] Natl Univ Hochiminh City, Ho Chi Minh City, Vietnam
关键词
Lagrange multipliers theorem; saddle point; mathematical programming;
D O I
10.1016/j.jmaa.2005.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed spaces. Applying these results, we extend some results about saddle point optimality criteria in mathematical programming. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 23 条
[1]   Lagrange multipliers for functions derivable along directions in a linear subspace [J].
An, LH ;
Du, PX ;
Duc, DM ;
Van Tuoc, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :595-604
[2]  
[Anonymous], 1980, SOVIET MATH DOKL
[3]   On incomplete Lagrange function and saddle point optimality criteria in mathematical programming [J].
Bector, CR ;
Chandra, S ;
Abha .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (01) :2-12
[4]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[5]   IMPLICIT FUNCTIONS AND OPTIMIZATION PROBLEMS WITHOUT CONTINUOUS DIFFERENTIABILITY OF DATA [J].
HALKIN, H .
SIAM JOURNAL ON CONTROL, 1974, 12 (02) :229-236
[6]   A LAGRANGE MULTIPLIER RULE WITH SMALL CONVEX-VALUED SUBDIFFERENTIALS FOR NONSMOOTH PROBLEMS OF MATHEMATICAL-PROGRAMMING INVOLVING EQUALITY AND NONFUNCTIONAL CONSTRAINTS [J].
IOFFE, A .
MATHEMATICAL PROGRAMMING, 1993, 58 (01) :137-145
[7]   NECESSARY CONDITIONS IN NONSMOOTH OPTIMIZATION [J].
IOFFE, AD .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (02) :159-189
[8]  
Ioffe AD., 1974, THEORY EXTREMAL PROB
[9]  
KRUGER AY, 1985, SIBERIAN MATH J+, V26, P370
[10]  
KRUGER AY, 1980, DOKL AKAD NAUK BELAR, V24, P684