ON THE CAUCHY PROBLEM FOR THE HARTREE TYPE EQUATION IN THE WIENER ALGEBRA

被引:16
作者
Carles, Remi [1 ,2 ]
Mouzaoui, Lounes [1 ,2 ]
机构
[1] CNRS, CC 051, F-34095 Montpellier, France
[2] Univ Montpellier 2, F-34095 Montpellier, France
关键词
Hartree equation; well-posedness; Wiener algebra; NONLINEAR SCHRODINGER-EQUATION; GEOMETRIC OPTICS; WELL-POSEDNESS; ILL-POSEDNESS; INSTABILITY;
D O I
10.1090/S0002-9939-2014-12072-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the mass-subcritical Hartree equation with a homogeneous kernel in the space of square integrable functions whose Fourier transform is integrable. We prove a global well-posedness result in this space. On the other hand, we show that the Cauchy problem is not even locally well-posed if we simply work in the space of functions whose Fourier transform is integrable. Similar results are proven when the kernel is not homogeneous and is such that its Fourier transform belongs to some Lebesgue space.
引用
收藏
页码:2469 / 2482
页数:14
相关论文
共 23 条
[1]  
Bahouri Hajer, 2011, GRUND MATH WISS, V343
[2]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[3]  
Burq N, 2002, MATH RES LETT, V9, P323
[4]   Geometric optics and instability for NLS and Davey-Stewartson models [J].
Carles, Remi ;
Dumas, Eric ;
Sparber, Christof .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (06) :1885-1921
[5]   MULTIPHASE WEAKLY NONLINEAR GEOMETRIC OPTICS FOR SCHRODINGER EQUATIONS [J].
Carles, Remi ;
Dumas, Eric ;
Sparber, Christof .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :489-518
[6]  
Cazenave Thierry, 2003, COURANT LECT NOTES M, V10
[7]  
Christ M, 2007, ANN MATH STUD, V163, P131
[8]  
Christ M., INSTABILITY PERIODIC
[9]   SHORT PULSES APPROXIMATIONS IN DISPERSIVE MEDIA [J].
Colin, Mathieu ;
Lannes, David .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (02) :708-732
[10]   ALMOST SURE WELL-POSEDNESS OF THE CUBIC NONLINEAR SCHRODINGER EQUATION BELOW L2(T) [J].
Colliander, James ;
Oh, Tadahiro .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (03) :367-414