Periodic solutions of forced Kirchhoff equations

被引:0
作者
Baldi, Pietro [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
NONLINEAR-WAVE EQUATIONS; CANTOR FAMILIES; CONSTRUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Kirchhoff equation for a vibrating body, in any dimension, in the presence of a time-periodic external forcing with period 2 pi/omega and amplitude epsilon. We treat both Dirichlet and space-periodic boundary conditions, and both analytic and Sobolev regularity. We prove the existence, regularity and local uniqueness of time-periodic solutions, using a Nash-Moser iteration scheme. The results hold for parameters (omega, epsilon) in a Cantor set with asymptotically full measure as epsilon -> 0.
引用
收藏
页码:117 / 141
页数:25
相关论文
共 39 条
[1]  
[Anonymous], 1992, Rend. Sem. Mat. Fis. Milano, DOI DOI 10.1007/BF02925435
[3]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[4]  
AROSIO A, 1984, NONLINEAR PARTIAL DI, V6, P1
[5]  
Arosio A., 1993, Functional analytic methods in complex analysis and applications to partial differential equations, P220
[6]   Forced vibrations of a nonhomogeneous string [J].
Baldi, Pietro ;
Berti, Massimiliano .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :382-412
[7]  
Bernstein S., 1940, Bull. Acad. Sci. URSS. Sr. Math. (Izvestia Akad. Nauk SSSR), V4, P17
[8]  
BERTI M, ARCH RATION IN PRESS
[9]  
BERTI M, 2008, PROGR NONLINEAR DIFF, V74
[10]   Cantor families of periodic solutions of wave equations with Ck nonlinearities [J].
Berti, Massimiliano ;
Bolle, Philippe .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :247-276