A numerical method for a model of two-phase flow in a coupled free flow and porous media system

被引:64
作者
Chen, Jie [1 ]
Sun, Shuyu [3 ]
Wang, Xiao-Ping [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] King Abdullah Univ Sci Technol, Div Comp Elect & Math Sci & Engn, Thuwal 239556900, Saudi Arabia
关键词
Two phase flow; Porous media; Darcy's law; Robin-Robin domain decomposition; MOVING CONTACT LINE; DOMAIN DECOMPOSITION METHOD; BOUNDARY-CONDITION; NONLINEAR STOKES; ELEMENT-METHOD; CAHN-HILLIARD; SURFACE;
D O I
10.1016/j.jcp.2014.02.043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 26 条
[1]   A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems [J].
Bao, Kai ;
Shi, Yi ;
Sun, Shuyu ;
Wang, Xiao-Ping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (24) :8083-8099
[2]  
Bastian Peter, 1999, THESIS CHRISTIAN ALB
[3]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[4]   A unified stabilized method for Stokes' and Darcy's equations [J].
Burman, Erik ;
Hansbo, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :35-51
[5]   Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition [J].
Cao, Yanzhao ;
Gunzburger, Max ;
He, Xiaoming ;
Wang, Xiaoming .
NUMERISCHE MATHEMATIK, 2011, 117 (04) :601-629
[6]   A PARALLEL ROBIN-ROBIN DOMAIN DECOMPOSITION METHOD FOR THE STOKES-DARCY SYSTEM [J].
Chen, Wenbin ;
Gunzburger, Max ;
Hua, Fei ;
Wang, Xiaoming .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) :1064-1084
[7]  
CHEN Z, 2002, CONT MATH, V295
[8]   An improved IMPES method for two-phase flow in porous media [J].
Chen, ZX ;
Huan, GR ;
Li, BY .
TRANSPORT IN POROUS MEDIA, 2004, 54 (03) :361-376
[9]   Mathematical and numerical models for coupling surface and groundwater flows [J].
Discacciati, M ;
Miglio, E ;
Quarteroni, A .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :57-74
[10]   Coupling nonlinear Stokes and Darcy flow using mortar finite elements [J].
Ervin, V. J. ;
Jenkins, E. W. ;
Sun, S. .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (11) :1198-1222