Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits

被引:28
作者
Chiesa, Alessandro [1 ]
Santini, Paolo [1 ]
Gerace, Dario [2 ]
Raftery, James [3 ]
Houck, Andrew A. [3 ]
Carretta, Stefano [1 ]
机构
[1] Univ Parma, Dipartimento Fis & Sci Terra, I-43124 Parma, Italy
[2] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
关键词
ALGORITHMS; CIRCUITS; MODELS;
D O I
10.1038/srep16036
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Resolving quantum many-body problems represents one of the greatest challenges in physics and physical chemistry, due to the prohibitively large computational resources that would be required by using classical computers. A solution has been foreseen by directly simulating the time evolution through sequences of quantum gates applied to arrays of qubits, i.e. by implementing a digital quantum simulator. Superconducting circuits and resonators are emerging as an extremely promising platform for quantum computation architectures, but a digital quantum simulator proposal that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is presently lacking. Here we propose a viable scheme to implement a universal quantum simulator with hybrid spin-photon qubits in an array of superconducting resonators, which is intrinsically scalable and allows for local control. As representative examples we consider the transverse-field Ising model, a spin-1 Hamiltonian, and the two-dimensional Hubbard model and we numerically simulate the scheme by including the main sources of decoherence.
引用
收藏
页数:14
相关论文
共 50 条
[11]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[12]   Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories [J].
Diniz, I. ;
Portolan, S. ;
Ferreira, R. ;
Gerard, J. M. ;
Bertet, P. ;
Auffeves, A. .
PHYSICAL REVIEW A, 2011, 84 (06)
[13]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[15]   Quantum simulation [J].
Georgescu, I. M. ;
Ashhab, S. ;
Nori, Franco .
REVIEWS OF MODERN PHYSICS, 2014, 86 (01) :153-185
[16]   High-fidelity controlled-σZ gate for resonator-based superconducting quantum computers [J].
Ghosh, Joydip ;
Galiautdinov, Andrei ;
Zhou, Zhongyuan ;
Korotkov, Alexander N. ;
Martinis, John M. ;
Geller, Michael R. .
PHYSICAL REVIEW A, 2013, 87 (02)
[17]   Multimode Storage and Retrieval of Microwave Fields in a Spin Ensemble [J].
Grezes, C. ;
Julsgaard, B. ;
Kubo, Y. ;
Stern, M. ;
Umeda, T. ;
Isoya, J. ;
Sumiya, H. ;
Abe, H. ;
Onoda, S. ;
Ohshima, T. ;
Jacques, V. ;
Esteve, J. ;
Vion, D. ;
Esteve, D. ;
Molmer, K. ;
Bertet, P. .
PHYSICAL REVIEW X, 2014, 4 (02)
[18]   Digital Quantum Simulation of Spin Systems in Superconducting Circuits [J].
Heras, U. Las ;
Mezzacapo, A. ;
Lamata, L. ;
Filipp, S. ;
Wallraff, A. ;
Solano, E. .
PHYSICAL REVIEW LETTERS, 2014, 112 (20)
[19]   Fermionic models with superconducting circuits [J].
Heras, Urtzi Las ;
Garcia-Alvarez, Laura ;
Mezzacapo, Antonio ;
Solano, Enrique ;
Lamata, Lucas .
EPJ QUANTUM TECHNOLOGY, 2015, 2
[20]  
Houck AA, 2012, NAT PHYS, V8, P292, DOI [10.1038/NPHYS2251, 10.1038/nphys2251]