Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor

被引:45
作者
Chandel, M. K. [1 ]
Hoteit, A. [1 ]
Delebarre, A. [1 ]
机构
[1] Ecole Mines Nantes, Dept Energet & Environm Engn, F-44307 Nantes, France
关键词
Chemical looping combustion; Oxygen carriers; Fluidization; OXYGEN CARRIERS; NICKEL; CU; BEHAVIOR; PARTICLE; FE; NI;
D O I
10.1016/j.fuel.2008.12.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Chemical looping combustion (CLC) is the process in which metal oxides, rather than air or pure oxygen, supply the oxygen required for combustion. In this process, different gaseous fuels can be burnt with the inherent separation of CO2. The feasibility of the CLC system depends greatly on the selection of appropriate metal oxides as oxygen carriers (CC). In this study, NiO-NiAl2O4, Cu0.95Fe1.05AlO4, and CuO-Cu0.95Fe1.05AlO4 were tested experimentally in a fluidized bed reactor as a function of oxidation-reduction cycles, temperature, bed inventory and superficial gas velocity. The results showed that flue gases with a CO2 concentration as high as 97% can be obtained. The flue gases should be suitable for transport and storage after clean-up and purification. With an increase in the bed inventory or a decrease in superficial gas velocity, the flue gas characteristics improved i.e. more CO2 and fewer secondary components or less unreacted fuel were obtained. Carbon formation could occur during the reduction phase but it decreased with an increase in temperature and inventory and could be completely avoided by mixing steam with the fuel. The reactivity of NiO/NiAl2O4 was higher than the Cu- and Fe-based oxygen carriers. Increasing the CuO fraction in the oxygen carrier led to defluidization of the bed during the reduction and oxidation phases. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:898 / 908
页数:11
相关论文
共 20 条
[1]   Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion [J].
Abad, Alberto ;
Adanez, Juan ;
Garcia-Labiano, Francisco ;
de Diego, Luis F. ;
Gayan, Pilar ;
Celaya, Javier .
CHEMICAL ENGINEERING SCIENCE, 2007, 62 (1-2) :533-549
[2]   Selection of oxygen carriers for chemical-looping combustion [J].
Adánez, J ;
de Diego, LF ;
García-Labiano, F ;
Gayán, P ;
Abad, A ;
Palacios, JM .
ENERGY & FUELS, 2004, 18 (02) :371-377
[3]   Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle [J].
Brandvoll, O ;
Bolland, O .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2004, 126 (02) :316-321
[4]  
CHANDEL MK, 2007, 3 EUR COMB M ECM 200
[5]   Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (04) :668-676
[6]   Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion [J].
Cho, P ;
Mattisson, T ;
Lyngfelt, A .
FUEL, 2004, 83 (09) :1215-1225
[7]   Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion:: Avoiding fluidized bed agglomeration [J].
de Diego, LF ;
Gayán, P ;
García-Labiano, F ;
Celaya, J ;
Abad, M ;
Adánez, J .
ENERGY & FUELS, 2005, 19 (05) :1850-1856
[8]   Development of Cu-based oxygen carriers for chemical-looping combustion [J].
de Diego, LF ;
García-Labiano, F ;
Adánez, J ;
Gayán, P ;
Abad, A ;
Corbella, BM ;
Palacios, JM .
FUEL, 2004, 83 (13) :1749-1757
[9]   Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion [J].
García-Labiano, F ;
Adánez, J ;
de Diego, LF ;
Gayán, P ;
Abad, A .
ENERGY & FUELS, 2006, 20 (01) :26-33
[10]   Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200 °C [J].
Ishida, M ;
Yamamoto, M ;
Ohba, T .
ENERGY CONVERSION AND MANAGEMENT, 2002, 43 (9-12) :1469-1478