Bayesian optimization for inverse problems in time-dependent quantum dynamics

被引:13
作者
Deng, Z. [1 ]
Tutunnikov, I. [2 ,3 ]
Averbukh, I. Sh. [2 ,3 ]
Thachuk, M. [1 ]
Krems, R. V. [1 ,4 ]
机构
[1] Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
[2] Weizmann Inst Sci, AMOS, IL-7610001 Rehovot, Israel
[3] Weizmann Inst Sci, Dept Chem & Biol Phys, IL-7610001 Rehovot, Israel
[4] Univ British Columbia, Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 以色列科学基金会;
关键词
EFFICIENT; MOLECULES; CONSTRUCTION; SIMULATIONS; CALIBRATION; POTENTIALS; FRAMEWORK; ENERGY;
D O I
10.1063/5.0015896
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate an efficient algorithm for inverse problems in time-dependent quantum dynamics based on feedback loops between Hamiltonian parameters and the solutions of the Schrodinger equation. Our approach formulates the inverse problem as a target vector estimation problem and uses Bayesian surrogate models of the Schrodinger equation solutions to direct the optimization of feedback loops. For the surrogate models, we use Gaussian processes with vector outputs and composite kernels built by an iterative algorithm with the Bayesian information criterion (BIC) as a kernel selection metric. The outputs of the Gaussian processes are designed to model an observable simultaneously at different time instances. We show that the use of Gaussian processes with vector outputs and the BIC-directed kernel construction reduces the number of iterations in the feedback loops by, at least, a factor of 3. We also demonstrate an application of Bayesian optimization for inverse problems with noisy data. To demonstrate the algorithm, we consider the orientation and alignment of polyatomic molecules SO2 and propylene oxide (PPO) induced by strong laser pulses. We use simulated time evolutions of the orientation or alignment signals to determine the relevant components of the molecular polarizability tensors. We show that, for the five independent components of the polarizability tensor of PPO, this can be achieved with as few as 30 quantum dynamics calculations.
引用
收藏
页数:12
相关论文
共 62 条
[21]  
Goldstein H.C., 2001, Classical Mechanics, V3rd
[22]   Orientation dynamics of asymmetric rotors using random phase wave functions [J].
Kallush, Shimshon ;
Fleischer, Sharly .
PHYSICAL REVIEW A, 2015, 91 (06)
[23]   Molecular movie of ultrafast coherent rotational dynamics of OCS [J].
Karamatskos, Evangelos T. ;
Raabe, Sebastian ;
Mullins, Terry ;
Trabattoni, Andrea ;
Stammer, Philipp ;
Goldsztejn, Gildas ;
Johansen, Rasmus R. ;
Dlugolecki, Karol ;
Stapelfeldt, Henrik ;
Vrakking, Marc J. J. ;
Trippel, Sebastian ;
Rouzee, Arnaud ;
Kuepper, Jochen .
NATURE COMMUNICATIONS, 2019, 10 (1)
[24]   Bayesian calibration of computer models [J].
Kennedy, MC ;
O'Hagan, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :425-450
[25]   X-ray diffractive imaging of controlled gas-phase molecules: Toward imaging of dynamics in the molecular frame [J].
Kierspel, Thomas ;
Morgan, Andrew ;
Wiese, Joss ;
Mullins, Terry ;
Aquila, Andy ;
Barty, Anton ;
Bean, Richard ;
Boll, Rebecca ;
Boutet, Sebastien ;
Bucksbaum, Philip ;
Chapman, Henry N. ;
Christensen, Lauge ;
Fry, Alan ;
Hunter, Mark ;
Koglin, Jason E. ;
Liang, Mengning ;
Mariani, Valerio ;
Natan, Adi ;
Robinson, Joseph ;
Rolles, Daniel ;
Rudenko, Artem ;
Schnorr, Kirsten ;
Stapelfeldt, Henrik ;
Stern, Stephan ;
Thogersen, Jan ;
Yoon, Chun Hong ;
Wang, Fenglin ;
Kuepper, Jochen .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (08)
[26]   RKR POTENTIALS AND SEMICLASSICAL CENTRIFUGAL CONSTANTS OF DIATOMIC-MOLECULES [J].
KIRSCHNER, SM ;
WATSON, JKG .
JOURNAL OF MOLECULAR SPECTROSCOPY, 1973, 47 (02) :234-242
[27]   Quantum control of molecular rotation [J].
Koch, Christiane P. ;
Lemeshko, Mikhail ;
Sugny, Dominique .
REVIEWS OF MODERN PHYSICS, 2019, 91 (03)
[28]   DETERMINATION OF MOLECULAR STRUCTURE FROM MICROWAVE SPECTROSCOPIC DATA [J].
KRAITCHMAN, J .
AMERICAN JOURNAL OF PHYSICS, 1953, 21 (01) :17-24
[29]   Bayesian machine learning for quantum molecular dynamics [J].
Krems, R. V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (25) :13392-13410
[30]  
Krems R.V., 2018, MOL ELECTROMAGNETIC