On the distribution of CO2 and CO in the mesosphere and lower thermosphere

被引:104
作者
Garcia, Rolando R. [1 ]
Lopez-Puertas, Manuel [2 ]
Funke, Bernd [2 ]
Marsh, Daniel R. [1 ]
Kinnison, Douglas E. [1 ]
Smith, Anne K. [1 ]
Gonzalez-Galindo, Francisco [2 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[2] CSIC, Inst Astrofis Andalucia, Granada, Spain
基金
美国国家科学基金会;
关键词
CARBON-MONOXIDE; MICROWAVE RADIOMETRY; UPPER-ATMOSPHERE; MODEL; TEMPERATURE; MIDDLE; IONOSPHERE; VALIDATION; INSTRUMENT; ABUNDANCES;
D O I
10.1002/2013JD021208
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We have used the Whole Atmosphere Community Climate Model (WACCM) to calculate the distribution of CO2 and CO in the mesosphere and lower thermosphere (MLT), and we have compared the results with observations, mainly from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer and Michelson Interferometer for Passive Atmospheric Sounding satellite-borne instruments. We find that WACCM can reproduce the observed distribution of CO2 in the MLT and the rapid falloff of CO2 above about 80 km. Analysis of the principal terms in the calculated budget of CO2 shows that its global-mean vertical profile is determined mainly by the competition between molecular diffusive separation and eddy mixing by gravity waves. The model underestimates somewhat the mixing ratio of CO2 in the thermosphere compared to that in the observations, but we show that the discrepancy may be eliminated by a reasonable adjustment of the Prandtl number used to calculate the diffusivity due to gravity waves. Simulated CO is also consistent with observations, except that in the standard version of the model, its mixing ratio is uniformly lower than observed above about 100 km. We conclude that WACCM likely underestimates the rate of production of CO in the lower thermosphere from photolysis of CO2 at wavelengths <121 nm, and we show that this stems from the use of a very large absorption cross section for O-2 in the wavelength range 105-121 nm. When a smaller cross section is used, photolysis of CO2 increases by a factor of 2-3 at similar to 95-115 km and, as a result, CO mixing ratios become larger and agree much more closely with observations. We emphasize that the increase in CO2 photolysis implies only minor changes in the vertical profile of CO2 because photolytic loss is a minor term in the budget of CO2 in the MLT.
引用
收藏
页码:5700 / 5718
页数:19
相关论文
共 46 条
[1]  
Banks P.M., 2013, Aeronomy
[2]   First multi-year occultation observations of CO2 in the MLT by ACE satellite: observations and analysis using the extended CMAM [J].
Beagley, S. R. ;
Boone, C. D. ;
Fomichev, V. I. ;
Jin, J. J. ;
Semeniuk, K. ;
McConnell, J. C. ;
Bernath, P. F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (03) :1133-1153
[3]   Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer [J].
Boone, CD ;
Nassar, R ;
Walker, KA ;
Rochon, Y ;
McLeod, SD ;
Rinsland, CP ;
Bernath, PF .
APPLIED OPTICS, 2005, 44 (33) :7218-7231
[4]   Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere -: art. no. 1729 [J].
Chabrillat, S ;
Kockarts, G ;
Fonteyn, D ;
Brasseur, G .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (15)
[5]   CO measurements from the ACE-FTS satellite instrument:: data analysis and validation using ground-based, airborne and spaceborne observations [J].
Clerbaux, C. ;
George, M. ;
Turquety, S. ;
Walker, K. A. ;
Barret, B. ;
Bernath, P. ;
Boone, C. ;
Borsdorff, T. ;
Cammas, J. P. ;
Catoire, V. ;
Coffey, M. ;
Coheur, P. -F. ;
Deeter, M. ;
De Maziere, M. ;
Drummond, J. ;
Duchatelet, P. ;
Dupuy, E. ;
de Zafra, R. ;
Eddounia, F. ;
Edwards, D. P. ;
Emmons, L. ;
Funke, B. ;
Gille, J. ;
Griffith, D. W. T. ;
Hannigan, J. ;
Hase, F. ;
Hoepfner, M. ;
Jones, N. ;
Kagawa, A. ;
Kasai, Y. ;
Kramer, I. ;
Le Flochmoen, E. ;
Livesey, N. J. ;
Lopez-Puertas, M. ;
Luo, M. ;
Mahieu, E. ;
Murtagh, D. ;
Nedelec, P. ;
Pazmino, A. ;
Pumphrey, H. ;
Ricaud, P. ;
Rinsland, C. P. ;
Robert, C. ;
Schneider, M. ;
Senten, C. ;
Stiller, G. ;
Strandberg, A. ;
Strong, K. ;
Sussmann, R. ;
Thouret, V. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (09) :2569-2594
[6]  
Emmert JT, 2012, NAT GEOSCI, V5, P868, DOI [10.1038/ngeo1626, 10.1038/NGEO1626]
[7]   MIPAS:: an instrument for atmospheric and climate research [J].
Fischer, H. ;
Birk, M. ;
Blom, C. ;
Carli, B. ;
Carlotti, M. ;
von Clarmann, T. ;
Delbouille, L. ;
Dudhia, A. ;
Ehhalt, D. ;
Endemann, M. ;
Flaud, J. M. ;
Gessner, R. ;
Kleinert, A. ;
Koopman, R. ;
Langen, J. ;
Lopez-Puertas, M. ;
Mosner, P. ;
Nett, H. ;
Oelhaf, H. ;
Perron, G. ;
Remedios, J. ;
Ridolfi, M. ;
Stiller, G. ;
Zander, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (08) :2151-2188
[8]   Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments [J].
Forkman, P. ;
Christensen, O. M. ;
Eriksson, P. ;
Urban, J. ;
Funke, B. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (11) :2827-2841
[9]   Solar activity variations of the Venus thermosphere/ionosphere [J].
Fox, JL ;
Sung, KY .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A10) :21305-21335
[10]   IONIZATION, LUMINOSITY, AND HEATING OF THE UPPER-ATMOSPHERE OF MARS [J].
FOX, JL ;
DALGARNO, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1979, 84 (NA12) :7315-7333