Auroral ionospheric plasma flow extraction using subsonic retarding potential analyzers

被引:7
作者
Fraunberger, Michael [1 ]
Lynch, K. A. [1 ]
Clayton, Robert [2 ]
Roberts, Thomas Max [3 ]
Hysell, David [4 ]
Lessard, Marc [5 ]
Reimer, Ashton [6 ]
Varney, Roger [6 ]
机构
[1] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
[2] Embry Riddle Aeronaut Univ, Phys Sci Dept, Daytona Beach, FL 32114 USA
[3] NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Cornell Univ, Earth & Atmospher Sci, Ithaca, NY 14853 USA
[5] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[6] SRI Int, Menlo Pk, CA 94025 USA
关键词
TEMPERATURE;
D O I
10.1063/1.5144498
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Thermal ion retarding potential analyzers (RPAs) are used to measure in situ auroral ionospheric plasma parameters. This article analyzes data from a low-resource RPA in order to quantify the capability of the sensor. The RPA collects a sigmoidal current-voltage (I-V) curve, which depends on a non-linear combination of Maxwellian plasma parameters, so a forward-modeling procedure is used to match the best choice plasma parameters for each I-V curve. First, the procedure is used, given constraining information about the flow moment, to find scalar plasma parameters-ion temperature, ion density, and spacecraft sheath potential-for a single I-V curve interpreted in the context of a Maxwellian plasma distribution. Second, two azimuthally separated I-V curves from a single sensor on the spinning spacecraft are matched, given constraining information on density and sheath potential, to determine the bulk plasma flow components. These flows are compared to a high-fidelity, high-resource flow diagnostic. In both cases, the procedure's sensitivity to variations in constraining diagnostics is tested to ensure that the matching procedure is robust. Finally, a standalone analysis is shown, providing plasma scalar and flow parameters using known payload velocity and International Reference Ionosphere density as input information. The results show that the sensor can determine scalar plasma measurements as designed, as well as determine plasma DC flows to within hundreds of m/s error compared to a high-fidelity metric, thus showing their capability to replace higher-resource methods for determining DC plasma flows when coarse-resolution measurements at in situ spatial scales are suitable.
引用
收藏
页数:14
相关论文
共 29 条
[1]   Neutral thermospheric dynamics observed with two scanning Doppler imagers: 1. Monostatic and bistatic winds [J].
Anderson, C. ;
Conde, M. ;
McHarg, M. G. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2012, 117
[2]   Birkeland current boundary flows [J].
Archer, W. E. ;
Knudsen, D. J. ;
Burchill, J. K. ;
Jackel, B. ;
Donovan, E. ;
Connors, M. ;
Juusola, L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (04) :4617-4627
[3]   Anisotropic fluid modeling of ionospheric upflow: Effects of low-altitude anisotropy and thermospheric winds [J].
Burleigh, M. ;
Zettergren, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (01) :808-827
[4]  
Burleigh M., 2020, SPATIOTEMPORAL UNPUB
[5]   Two-Dimensional Maps of In Situ Ionospheric Plasma Flow Data Near Auroral Arcs using Auroral Imagery [J].
Clayton, Robert ;
Lynch, Kristina ;
Zettergren, Matt ;
Burleigh, Meghan ;
Conde, Mark ;
Grubbs, Guy ;
Hampton, Don ;
Hysell, David ;
Lessard, Marc ;
Michell, Robert ;
Reimer, Ashton ;
Roberts, T. Maximillian ;
Samara, Marilia ;
Varney, Roger .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (04) :3036-3056
[6]   Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument [J].
Cohen, I. J. ;
Widholm, M. ;
Lessard, M. R. ;
Riley, P. ;
Heavisides, J. ;
Moen, J. I. ;
Clausen, L. B. N. ;
Bekkeng, T. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (07) :6774-6782
[7]   A versatile retarding potential analyzer for nano-satellite platforms [J].
Fanelli, L. ;
Noel, S. ;
Earle, G. D. ;
Fish, C. ;
Davidson, R. L. ;
Robertson, R. V. ;
Marquis, P. ;
Garg, V. ;
Somasundaram, N. ;
Kordella, L. ;
Kennedy, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (12)
[8]   Electrostatic analyzer measurements of ionospheric thermal ion populations [J].
Fernandes, P. A. ;
Lynch, K. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (07) :7316-7325
[9]   Measuring the seeds of ion outflow: Auroral sounding rocket observations of low-altitude ion heating and circulation [J].
Fernandes, P. A. ;
Lynch, K. A. ;
Zettergren, M. ;
Hampton, D. L. ;
Bekkeng, T. A. ;
Cohen, I. J. ;
Conde, M. ;
Fisher, L. E. ;
Horak, P. ;
Lessard, M. R. ;
Miceli, R. J. ;
Michell, R. G. ;
Moen, J. ;
Powell, S. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (02) :1587-1607
[10]   Including sheath effects in the interpretation of planar retarding potential analyzer's low-energy ion data [J].
Fisher, L. E. ;
Lynch, K. A. ;
Fernandes, P. A. ;
Bekkeng, T. A. ;
Moen, J. ;
Zettergren, M. ;
Miceli, R. J. ;
Powell, S. ;
Lessard, M. R. ;
Horak, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (04)