Dynamic Kibble-Zurek scaling framework for open dissipative many-body systems crossing quantum transitions

被引:38
作者
Rossini, Davide [1 ]
Vicari, Ettore
机构
[1] Univ Pisa, Dipartimento Fis, Largo Pontecorvo 3, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 02期
关键词
PHASE-TRANSITION; ISING-MODEL; SIMULATIONS;
D O I
10.1103/PhysRevResearch.2.023211
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the critical value of a zero-temperature quantum transition. In particular we address whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime similar to that emerging in closed systems. We focus on a class of dissipative mechanisms the dynamics of which can be reliably described through a Lindblad master equation governing the time evolution of the system's density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, the main features of which are controlled by the universality class of the quantum transition. This requires a particular tuning of the dissipative interactions, the decay rate u of which should scale as u similar to t(s)(-kappa) with increasing the time scale t(3) of the KZ protocol, where the exponent kappa = z/(y(mu) + z) depends on the dynamic exponent z and the renormalization-group dimension y(mu) of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which include local pumping, decay, and dephasing.
引用
收藏
页数:15
相关论文
共 75 条
[31]   COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS OF N-LEVEL SYSTEMS [J].
GORINI, V ;
KOSSAKOWSKI, A ;
SUDARSHAN, ECG .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :821-825
[32]   Scaling Behavior and Beyond Equilibrium in the Hexagonal Manganites [J].
Griffin, S. M. ;
Lilienblum, M. ;
Delaney, K. T. ;
Kumagai, Y. ;
Fiebig, M. ;
Spaldin, N. A. .
PHYSICAL REVIEW X, 2012, 2 (04)
[33]  
Hedvall P., ARXIV171201560
[34]   Noise-driven dynamics and phase transitions in fermionic systems [J].
Horstmann, Birger ;
Cirac, J. Ignacio ;
Giedke, Geza .
PHYSICAL REVIEW A, 2013, 87 (01)
[35]  
Houck AA, 2012, NAT PHYS, V8, P292, DOI [10.1038/nphys2251, 10.1038/NPHYS2251]
[36]   STATISTICAL MECHANICS OF ANISOTROPIC LINEAR HEISENBERG MODEL [J].
KATSURA, S .
PHYSICAL REVIEW, 1962, 127 (05) :1508-&
[37]   Dissipation in adiabatic quantum computers: lessons from an exactly solvable model [J].
Keck, Maximilian ;
Montangero, Simone ;
Santoro, Giuseppe E. ;
Fazio, Rosario ;
Rossini, Davide .
NEW JOURNAL OF PHYSICS, 2017, 19
[38]   Quantum Kibble-Zurek mechanism and critical dynamics on a programmable Rydberg simulator [J].
Keesling, Alexander ;
Omran, Ahmed ;
Levine, Harry ;
Bernien, Hannes ;
Pichler, Hannes ;
Choi, Soonwon ;
Samajdar, Rhine ;
Schwartz, Sylvain ;
Silvi, Pietro ;
Sachdev, Subir ;
Zoller, Peter ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2019, 568 (7751) :207-+
[39]   TOPOLOGY OF COSMIC DOMAINS AND STRINGS [J].
KIBBLE, TWB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (08) :1387-1398
[40]  
Kitaev A., 2001, Phys. Usp., V44, P131, DOI [DOI 10.1070/1063-7869/44/10S/S29, DOI 10.1070/1063-7869/44/10S/S29/META]