On Steady-State Multiple Resonances for a Modified Bretherton Equation

被引:4
|
作者
Sun, Jianglong [1 ,2 ,3 ]
Cui, Jifeng [4 ]
He, Zihan [5 ]
Liu, Zeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Naval Architecture & Ocean Engn Hyd, Wuhan, Hubei, Peoples R China
[3] Collaborat Innovat Ctr Adv Ship & Deep Sea Explor, Shanghai, Peoples R China
[4] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Inner Mongolia, Peoples R China
[5] Inner Mongolia Univ Technol, Coll Mech Engn, Hohhot, Inner Mongolia, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2017年 / 72卷 / 05期
基金
中国国家自然科学基金;
关键词
Modified Bertherton Equation; Multiple Resonance; Steady-State Resonance; WAVES; WATER;
D O I
10.1515/zna-2017-0047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, a modified Bretherton equation is considered to further check if steady-state multiple resonances exist not only for water waves but also for other dispersive medium. The linear resonance condition analysis shows that different components may interact with each other so multiple resonances may happen. Convergent steady-state solutions are obtained by solution procedure based on the homotopy analysis method (HAM) and the collocation method. Amplitude spectrum analysis confirms that more components indeed join the resonance as the nonlinearity increases. This article suggests that steady-state multiple resonance may exist in other dispersive system.
引用
收藏
页码:487 / 491
页数:5
相关论文
共 50 条
  • [41] THE STEADY-STATE
    RUBINO, CA
    SCIENCES-NEW YORK, 1985, 25 (02): : 18 - 19
  • [42] MULTIPLE STEADY-STATE SOLUTIONS FOR INTERLINKED SEPARATION SYSTEMS
    CHAVEZ, R
    SEADER, JD
    WAYBURN, TL
    INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1986, 25 (04): : 566 - 576
  • [43] AUDITORY STEADY-STATE RESPONSES TO MULTIPLE SIMULTANEOUS STIMULI
    LINS, OG
    PICTON, TW
    EVOKED POTENTIALS-ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1995, 96 (05): : 420 - 432
  • [44] STEADY-STATE VOLUME OF DISTRIBUTION AFTER MULTIPLE DOSES
    HAYTON, WL
    HAEFELFINGER, P
    JOURNAL OF PHARMACEUTICAL SCIENCES, 1985, 74 (10) : 1134 - 1134
  • [45] Multiple-comparison procedures for steady-state simulations
    Nakayama, MK
    ANNALS OF STATISTICS, 1997, 25 (06): : 2433 - 2450
  • [46] Steady-state analysis of circuits with multiple adaptive grids
    Wang, Zhou
    Christoffersen, Carlos E.
    2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, 2007, : 107 - 110
  • [47] Steady-state multiple dark photovoltaic spatial solitons
    Y. H. Zhang
    K. Q. Lu
    J. B. Guo
    K. H. Li
    B. Y. Liu
    The European Physical Journal D, 2012, 66
  • [48] HUMAN PHARMACOKINETICS OF MULTIPLE, STEADY-STATE DOSING OF IPTACOPAN
    Schmouder, Robert
    Junge, Guido
    Nidamarthy, Prasanna
    Kulmatycki, Kenneth
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 : I402 - I402
  • [49] Place specificity of multiple auditory steady-state responses
    Herdman, AT
    Picton, TW
    Stapells, DR
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 112 (04): : 1569 - 1582
  • [50] THEORETICAL INVESTIGATION OF STEADY-STATE MULTIPLE MIRROR PLASMAS
    MAKHIJAN.AB
    LICHTENB.AJ
    LIEBERMA.MA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1004 - 1004