High-Performance Aqueous Sodium-Ion Batteries with Hydrogel Electrolyte and Alloxazine/CMK-3 Anode

被引:42
|
作者
Zhong, Liqiao [1 ]
Lu, Yong [1 ]
Li, Haixia [1 ]
Tao, Zhanliang [1 ]
Cheng, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China
来源
关键词
Aqueous sodium-ion batteries; Organic anode; Alloxazine; Polyacrylamide hydrogel; CMK-3; Dissolution issue; IN-SALT ELECTROLYTE; HIGH-POWER; POLYACRYLAMIDE; NANOCOMPOSITES; CATHODE;
D O I
10.1021/acssuschemeng.8b00663
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous rechargeable sodium-ion batteries (AR-SIBs) are promising candidates for large-scale energy storage applications due to their high safety, low cost, and environmental friendliness. However, appropriate anode materials with high capacity for ARSIBs are limited, and their cycling stability is generally unsatisfactory. Here we report high-performance ARSIBs with polyacrylamide hydrogel as electrolyte and alloxazine (ALO) encapsulated in CMK-3 as anode. The hydrogel with solid content of 60% could effectively mitigate the dissolution issue of sodiated ALO because its cross-linked structure is helpful to reserve H2O. The ALO/CMK-3 anode based on a two-electron transfer reaction could deliver a high capacity of 160 mA h g(-1). The introduction of CMK-3 could improve the electrical conductivity of ALO and further reduce the dissolution of sodiated ALO because of its high conductivity and nanochannel structure. The full ARSIBs exhibit an energy density of 50 W h kg(-1) (based on the total mass of active electrode materials) with good capacity retention of 90% after 100 cycles at 2 C and high rate capability of 146 mA h g(-1) at 10 C (1 C = 250 mA g(-1)). This work paves the way to construct high-performance ARSIBs with high-capacity organic anode and hydrogel electrolyte.
引用
收藏
页码:7761 / 7768
页数:15
相关论文
共 50 条
  • [1] High-performance sodium batteries with the 9,10-anthraquinone/CMK-3 cathode and an ether-based electrolyte
    Guo, Chunyang
    Zhang, Kai
    Zhao, Qing
    Peia, Longkai
    Chen, Jun
    CHEMICAL COMMUNICATIONS, 2015, 51 (50) : 10244 - 10247
  • [2] Nanowire of WP as a High-Performance Anode Material for Sodium-Ion Batteries
    Pan, Qi
    Chen, Hui
    Wu, Zhenguo
    Wang, Yuan
    Zhong, Benhe
    Xia, Li
    Wang, Hai-Ying
    Cui, Guanwei
    Guo, Xiaodong
    Sun, Xuping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (04) : 971 - 975
  • [3] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331
  • [4] FeBO3 as a low cost and high-performance anode material for sodium-ion batteries
    Baozhu Wu
    Shuo Qi
    Xikai Wu
    Haoli Wang
    Qiangqiang Zhuang
    Huimin Yi
    Pu Xu
    Zhennan Xiong
    Gejun Shi
    Shuangqiang Chen
    Baofeng Wang
    Chinese Chemical Letters, 2021, 32 (10) : 3113 - 3117
  • [5] FeBO3 as a low cost and high-performance anode material for sodium-ion batteries
    Wu, Baozhu
    Qi, Shuo
    Wu, Xikai
    Wang, Haoli
    Zhuang, Qiangqiang
    Yi, Huimin
    Xu, Pu
    Xiong, Zhennan
    Shi, Gejun
    Chen, Shuangqiang
    Wang, Baofeng
    CHINESE CHEMICAL LETTERS, 2021, 32 (10) : 3113 - 3117
  • [6] SbPS4: A novel anode for high-performance sodium-ion batteries
    Yang, Miao
    Sun, Zhonghui
    Nie, Ping
    Yu, Haiyue
    Zhao, Chende
    Yu, Mengxuan
    Luo, Zhongzhen
    Geng, Hongbo
    Wu, Xinglong
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 470 - 474
  • [7] Antimony/Graphitic Carbon Composite Anode for High-Performance Sodium-Ion Batteries
    Zhao, Xin
    Vail, Sean A.
    Lu, Yuhao
    Song, Jie
    Pan, Wei
    Evans, David R.
    Lee, Jong-Jan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13871 - 13878
  • [8] A porous biomass-derived anode for high-performance sodium-ion batteries
    Zhu, Youyu
    Chen, Mingming
    Li, Qi
    Yuan, Chao
    Wang, Chengyang
    CARBON, 2018, 129 : 695 - 701
  • [9] SbPS4: A novel anode for high-performance sodium-ion batteries
    Miao Yang
    Zhonghui Sun
    Ping Nie
    Haiyue Yu
    Chende Zhao
    Mengxuan Yu
    Zhongzhen Luo
    Hongbo Geng
    Xinglong Wu
    ChineseChemicalLetters, 2022, 33 (01) : 470 - 474
  • [10] Molten salt synthesis of carbon anode for high-performance sodium-ion batteries
    Song, Qiushi
    Zhao, Hengpeng
    Zhao, Jie
    Chen, Denghui
    Xu, Qian
    Xie, Hongwei
    Ning, Zhiqiang
    Yu, Kai
    ELECTROCHIMICA ACTA, 2023, 447