Predicting miRNA-disease associations based on graph random propagation network and attention network

被引:32
|
作者
Zhong, Tangbo [1 ]
Li, Zhengwei [1 ]
You, Zhu-Hong [2 ]
Nie, Ru [1 ]
Zhao, Huan [1 ]
机构
[1] China Univ Min & Technol, Xuzhou, Peoples R China
[2] Northwestern Polytech Univ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
miRNA-disease association prediction; DropFeature; random propagation; attention mechanism; DATABASE;
D O I
10.1093/bib/bbab589
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Numerous experiments have demonstrated that abnormal expression of microRNAs (miRNAs) in organisms is often accompanied by the emergence of specific diseases. The research of miRNAs can promote the prevention and drug research of specific diseases. However, there are still many undiscovered links between miRNAs and diseases, which greatly limits the research of miRNAs. Therefore, for exploring the unknown miRNA-disease associations, we combine the graph random propagation network based on DropFeature with attention network to propose a novel deep learning model to predict the miRNA-disease associations (GRPAMDA). Specifically, we firstly construct the miRNA-disease heterogeneous graph based on miRNA-disease association information. Secondly, we adopt DropFeature to randomly delete the features of nodes in the graph and then perform propagation operations to enhance the features of miRNA and disease nodes. Thirdly, we employ the attention mechanism to fuse the features of random propagation by aggregating the enhanced neighbor features of miRNA and disease nodes. Finally, miRNA-disease association scores are generated by a fully connected layer. The average area under the curve of GRPAMDA model based on 5-fold cross-validation is 93.46% on HMDD v2.0. Case studies of esophageal tumors, lymphomas and prostate tumors show that 48, 47 and 46 of the top 50 miRNAs associated with these diseases are confirmed by dbDEMC and miR2Disease database, respectively. In short, the GRPAMDA model can be used as a valuable method to study miRNA-disease associations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Motif-Aware miRNA-Disease Association Prediction via Hierarchical Attention Network
    Zhao, Bo-Wei
    He, Yi-Zhou
    Su, Xiao-Rui
    Yang, Yue
    Li, Guo-Dong
    Huang, Yu-An
    Hu, Peng-Wei
    You, Zhu-Hong
    Hu, Lun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4281 - 4294
  • [42] MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations
    Tian-Ru Wu
    Meng-Meng Yin
    Cui-Na Jiao
    Ying-Lian Gao
    Xiang-Zhen Kong
    Jin-Xing Liu
    BMC Bioinformatics, 21
  • [43] Three-Layer Heterogeneous Network Combined With Unbalanced Random Walk for miRNA-Disease Association Prediction
    Yu, Limin
    Shen, Xianjun
    Zhong, Duo
    Yang, Jincai
    FRONTIERS IN GENETICS, 2020, 10
  • [44] A Constrained Probabilistic Matrix Decomposition Method for Predicting miRNA-disease Associations
    Lu, Xinguo
    Gao, Yan
    Zhu, Zhenghao
    Ding, Li
    Wang, Xinyu
    Liu, Fang
    Li, Jinxin
    CURRENT BIOINFORMATICS, 2021, 16 (04) : 524 - 533
  • [45] Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering
    Ru Nie
    Zhengwei Li
    Zhu-hong You
    Wenzheng Bao
    Jiashu Li
    BMC Medical Informatics and Decision Making, 21
  • [46] Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering
    Nie, Ru
    Li, Zhengwei
    You, Zhu-hong
    Bao, Wenzheng
    Li, Jiashu
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (SUPPL 1)
  • [47] HNMDA: heterogeneous network-based miRNA-disease association prediction
    Peng, Li-Hong
    Sun, Chuan-Neng
    Guan, Na-Na
    Li, Jian-Qiang
    Chen, Xing
    MOLECULAR GENETICS AND GENOMICS, 2018, 293 (04) : 983 - 995
  • [48] Identifying SM-miRNA associations based on layer attention graph convolutions network and matrix decomposition
    Ni, Jie
    Cheng, Xiaolong
    Ni, Tongguang
    Liang, Jiuzhen
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [49] Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations
    Xuan, Ping
    Pan, Shuxiang
    Zhang, Tiangang
    Liu, Yong
    Sun, Hao
    CELLS, 2019, 8 (09)
  • [50] Prediction of miRNA-disease associations based on Weighted K-Nearest known neighbors and network consistency projection
    Toprak, Ahmet
    Eryilmaz, Esma
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (01)