Predicting miRNA-disease associations based on graph random propagation network and attention network

被引:32
|
作者
Zhong, Tangbo [1 ]
Li, Zhengwei [1 ]
You, Zhu-Hong [2 ]
Nie, Ru [1 ]
Zhao, Huan [1 ]
机构
[1] China Univ Min & Technol, Xuzhou, Peoples R China
[2] Northwestern Polytech Univ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
miRNA-disease association prediction; DropFeature; random propagation; attention mechanism; DATABASE;
D O I
10.1093/bib/bbab589
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Numerous experiments have demonstrated that abnormal expression of microRNAs (miRNAs) in organisms is often accompanied by the emergence of specific diseases. The research of miRNAs can promote the prevention and drug research of specific diseases. However, there are still many undiscovered links between miRNAs and diseases, which greatly limits the research of miRNAs. Therefore, for exploring the unknown miRNA-disease associations, we combine the graph random propagation network based on DropFeature with attention network to propose a novel deep learning model to predict the miRNA-disease associations (GRPAMDA). Specifically, we firstly construct the miRNA-disease heterogeneous graph based on miRNA-disease association information. Secondly, we adopt DropFeature to randomly delete the features of nodes in the graph and then perform propagation operations to enhance the features of miRNA and disease nodes. Thirdly, we employ the attention mechanism to fuse the features of random propagation by aggregating the enhanced neighbor features of miRNA and disease nodes. Finally, miRNA-disease association scores are generated by a fully connected layer. The average area under the curve of GRPAMDA model based on 5-fold cross-validation is 93.46% on HMDD v2.0. Case studies of esophageal tumors, lymphomas and prostate tumors show that 48, 47 and 46 of the top 50 miRNAs associated with these diseases are confirmed by dbDEMC and miR2Disease database, respectively. In short, the GRPAMDA model can be used as a valuable method to study miRNA-disease associations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Predicting miRNA-disease associations based on PPMI and attention network
    Xie, Xuping
    Wang, Yan
    He, Kai
    Sheng, Nan
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [2] Predicting miRNA-disease associations based on PPMI and attention network
    Xuping Xie
    Yan Wang
    Kai He
    Nan Sheng
    BMC Bioinformatics, 24
  • [3] Adaptive deep propagation graph neural network for predicting miRNA-disease associations
    Hu, Hua
    Zhao, Huan
    Zhong, Tangbo
    Dong, Xishang
    Wang, Lei
    Han, Pengyong
    Li, Zhengwei
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2023, 22 (05) : 453 - 462
  • [4] Predicting miRNA-disease associations based on graph attention network with multi-source information
    Li, Guanghui
    Fang, Tao
    Zhang, Yuejin
    Liang, Cheng
    Xiao, Qiu
    Luo, Jiawei
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [5] Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
    Ji, Cunmei
    Wang, Yutian
    Ni, Jiancheng
    Zheng, Chunhou
    Su, Yansen
    FRONTIERS IN GENETICS, 2021, 12
  • [6] Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks
    Zhao, Huan
    Li, Zhengwei
    You, Zhu-Hong
    Nie, Ru
    Zhong, Tangbo
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1298 - 1307
  • [7] Predicting miRNA-Disease Associations Based on Spectral Graph Transformer With Dynamic Attention and Regularization
    Li, Zhengwei
    Bai, Xu
    Nie, Ru
    Liu, Yanyan
    Zhang, Lei
    You, Zhuhong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (12) : 7611 - 7622
  • [8] PMDAGS: Predicting miRNA-Disease Associations With Graph Nonlinear Diffusion Convolution Network and Similarities
    Yan, Cheng
    Duan, Guihua
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (03) : 394 - 404
  • [9] Predicting miRNA-Disease Associations From miRNA-Gene-Disease Heterogeneous Network With Multi-Relational Graph Convolutional Network Model
    Peng, Wei
    Che, Zicheng
    Dai, Wei
    Wei, Shoulin
    Lan, Wei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (06) : 3363 - 3375
  • [10] Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares
    Wang, Wengang
    Chen, Hailin
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)