Some results on the penalised nematic liquid crystals driven by multiplicative noise: weak solution and maximum principle

被引:18
作者
Brzezniak, Zdzislaw [1 ]
Hausenblas, Erika [2 ]
Razafimandimby, Paul Andre [3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Leoben, Dept Math & Informat Technol, Franz Josef Str 18, A-8700 Leoben, Austria
[3] Univ Pretoria, Dept Math & Appl Math, Lynwood Rd, ZA-0083 Pretoria, South Africa
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2019年 / 7卷 / 03期
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
Nematic Liquid Crystal; Leslie-Ericksen System; Martingale Solution; Maximum Principle Theorem; ERICKSEN-LESLIE SYSTEM; GLOBAL EXISTENCE; WELL-POSEDNESS; EQUATIONS; SOBOLEV; FLOW;
D O I
10.1007/s40072-018-0131-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove several mathematical results related to a system of highly nonlinear stochastic partial differential equations (PDEs). These stochastic equations describe the dynamics of penalised nematic liquid crystals under the influence of stochastic external forces. Firstly, we prove the existence of a global weak solution (in the sense of both stochastic analysis and PDEs). Secondly, we show the pathwise uniqueness of the solution in a 2D domain. In contrast to several works in the deterministic setting we replace the Ginzburg-Landau function 1(vertical bar n vertical bar <= 1)(vertical bar n vertical bar(2) - 1)n by an appropriate polynomial f (n) and we give sufficient conditions on the polynomial f for these two results to hold. Our third result is a maximum principle type theorem. More precisely, if we consider f (n) = 1(vertical bar d vertical bar <= 1)(vertical bar n vertical bar(2) - 1)n and if the initial condition n(0) satisfies vertical bar n(0)vertical bar <= 1, then the solution n also remains in the unit ball.
引用
收藏
页码:417 / 475
页数:59
相关论文
共 49 条
  • [1] Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients
    Albeverio, Sergio
    Brzezniak, Zdzislaw
    Wu, Jiang-Lun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 309 - 322
  • [2] [Anonymous], APPL MATH RES EXPRES
  • [3] [Anonymous], 1982, DEGRUYTER STUDIES MA
  • [4] [Anonymous], 1988, Chicago Lectures in Mathematics
  • [5] [Anonymous], 2014, ENCY MATH ITS APPL
  • [6] [Anonymous], RIMS S MATH AN INC F
  • [7] [Anonymous], 1993, Internat. Ser. Monogr. Phys.
  • [8] [Anonymous], 1986, CAMBRIDGE TRACTS MAT
  • [9] Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
  • [10] Atkinson K, 2009, TEXTS APPL MATH, V39, P1, DOI 10.1007/978-1-4419-0458-4_1