Categorical homotopy theory

被引:28
作者
Jardine, J. F. [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
test categories; weak equivalence classes; cubical sets and presheaves;
D O I
10.4310/HHA.2006.v8.n1.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is an exposition of the ideas and methods of Cisinksi, in the context of A-presheaves on a small Grothendieck site, where A is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by A-presheaves in the sense that there is a corresponding model structure for A-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski's ideas are explained in some detail for cubical sets.
引用
收藏
页码:71 / 144
页数:74
相关论文
共 13 条
[1]   Local projective model structures on simplicial presheaves [J].
Blander, BA .
K-THEORY, 2001, 24 (03) :283-301
[2]   Localization theories for simplicial presheaves [J].
Goerss, PG ;
Jardine, JF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (05) :1048-1089
[3]  
Jardine J., 2004, THEOR APPL CATEG, V12, P34
[4]  
Jardine J. F., 2000, DOC MATH, V5, P445
[5]  
Jardine J.F., 2001, HOMOL HOMOTOPY APPL, V3, P361
[6]   SIMPLICIAL PRESHEAVES [J].
JARDINE, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 47 (01) :35-87
[7]   On the homotopy theory of sheaves of simplicial groupoids [J].
Joyal, A ;
Tierney, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 :263-290
[9]  
Quillen D., 1973, Lecture Notes in Math., V341, P85, DOI 10.1007/BFb0067053
[10]  
Thomason R.W., 1980, CAHIERS TOPOLOGIE GE, V21, P305