Increased shear in the North Atlantic upper-level jet stream over the past four decades

被引:93
作者
Lee, Simon H. [1 ]
Williams, Paul D. [1 ]
Frame, Thomas H. A. [1 ]
机构
[1] Univ Reading, Dept Meteorol, Reading, Berks, England
基金
英国自然环境研究理事会;
关键词
TURBULENCE; TRENDS;
D O I
10.1038/s41586-019-1465-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Earth's equator-to-pole temperature gradient drives westerly mid-latitude jet streams through thermal wind balance(1). In the upper atmosphere, anthropogenic climate change is strengthening this meridional temperature gradient by cooling the polar lower stratosphere(2,3) and warming the tropical upper troposphere(4-6), acting to strengthen the upper-level jet stream(7). In contrast, in the lower atmosphere, Arctic amplification of global warming is weakening the meridional temperature gradient(8-10), acting to weaken the upper-level jet stream. Therefore, trends in the speed of the upper-level jet stream(11-13) represent a closely balanced tugof-war between two competing effects at different altitudes(14). It is possible to isolate one of the competing effects by analysing the vertical shear-the change in wind speed with height-instead of the wind speed, but this approach has not previously been taken. Here we show that, although the zonal wind speed in the North Atlantic polar jet stream at 250 hectopascals has not changed since the start of the observational satellite era in 1979, the vertical shear has increased by 15 per cent (with a range of 11-17 per cent) according to three different reanalysis datasets(15-17) . We further show that this trend is attributable to the thermal wind response to the enhanced upper-level meridional temperature gradient. Our results indicate that climate change may be having a larger impact on the North Atlantic jet stream than previously thought. The increased vertical shear is consistent with the intensification of shear-driven clear-air turbulence expected from climate change(18-20), which will affect aviation in the busy transatlantic flight corridor by creating a more turbulent flying environment for aircraft. We conclude that the effects of climate change and variability on the upper-level jet stream are being partly obscured by the traditional focus on wind speed rather than wind shear.
引用
收藏
页码:639 / +
页数:8
相关论文
共 34 条
[1]   Warming maximum in the tropical upper troposphere deduced from thermal winds [J].
Allen, Robert J. ;
Sherwood, Steven C. .
NATURE GEOSCIENCE, 2008, 1 (06) :399-403
[2]   Historical trends in the jet streams [J].
Archer, Cristina L. ;
Caldeira, Ken .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (08)
[3]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[4]   WHY ARE ARCTIC LINKAGES TO EXTREME WEATHER STILL UP IN THE AIR? [J].
Francis, Jennifer A. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (12) :2551-2557
[5]   Evidence for a wavier jet stream in response to rapid Arctic warming [J].
Francis, Jennifer A. ;
Vavrus, Stephen J. .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (01)
[6]   Evidence linking Arctic amplification to extreme weather in mid-latitudes [J].
Francis, Jennifer A. ;
Vavrus, Stephen J. .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[7]   Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems [J].
Fujiwara, Masatomo ;
Wright, Jonathon S. ;
Manney, Gloria L. ;
Gray, Lesley J. ;
Anstey, James ;
Birner, Thomas ;
Davis, Sean ;
Gerber, Edwin P. ;
Harvey, V. Lynn ;
Hegglin, Michaela I. ;
Homeyer, Cameron R. ;
Knox, John A. ;
Kruger, Kirstin ;
Lambert, Alyn ;
Long, Craig S. ;
Martineau, Patrick ;
Molod, Andrea ;
Monge-Sanz, Beatriz M. ;
Santee, Michelle L. ;
Tegtmeier, Susann ;
Chabrillat, Simon ;
Tan, David G. H. ;
Jackson, David R. ;
Polavarapu, Saroja ;
Compo, Gilbert P. ;
Dragani, Rossana ;
Ebisuzaki, Wesley ;
Harada, Yayoi ;
Kobayashi, Chiaki ;
McCarty, Will ;
Onogi, Kazutoshi ;
Pawson, Steven ;
Simmons, Adrian ;
Wargan, Krzysztof ;
Whitaker, Jeffrey S. ;
Zou, Cheng-Zhi .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (02) :1417-1452
[8]   Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models [J].
Haarsma, Reindert J. ;
Selten, Frank ;
van Oldenborgh, Geert Jan .
CLIMATE DYNAMICS, 2013, 41 (9-10) :2577-2588
[9]   The North Atlantic jet stream: a look at preferred positions, paths and transitions [J].
Hannachi, A. ;
Woollings, T. ;
Fraedrich, K. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (665) :862-877
[10]  
HELD IM, 1993, B AM METEOROL SOC, V74, P228, DOI 10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO