Multimodal Neural Machine Translation for English-Assamese Pair

被引:3
作者
Laskar, Sahinur Rahman [1 ]
Paul, Bishwaraj [1 ]
Paudwal, Siddharth [1 ]
Gautam, Pranjit [1 ]
Biswas, Nirmita [1 ]
Pakray, Partha [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Silchar, Assam, India
来源
2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021) | 2021年
关键词
English-Assamese; multimodal; Corpus; NMT;
D O I
10.1109/ComPE53109.2021.9752181
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Neural machine translation is a state-of-the-art approach for the automatic translation between natural languages. The multimodal concept utilizes textual and image features for improvement in low-resource neural machine translation. There is a lack of a standard multimodal corpus for the English-Assamese low-resource pair. We present a multimodal corpus which is suitable for multimodal translation task of English-Assamese pair. The English-Assamese multimodal corpus is used to implement multimodal neural machine translation models for English-to-Assamese translation and viceversa. The comparative results of automatic evaluation metrics between text-only and multimodal neural machine translation show multimodal neural machine translation outperforms text-only neural machine translation.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 24 条
  • [1] Abdulmumin I., 2020, P 7 WORKSH AS TRANSL, P109
  • [2] Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
  • [3] Calixto I., 2017, P 2017 C EMPIRICAL M
  • [4] Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
    Calixto, Iacer
    Liu, Qun
    Campbell, Nick
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 1913 - 1924
  • [5] Chowdhury KD, 2018, DEEP LEARNING APPROACHES FOR LOW-RESOURCE NATURAL LANGUAGE PROCESSING (DEEPLO), P33
  • [6] Dutta H, 2019, LIT STUD, V17, P181, DOI 10.1007/978-3-030-05977-4_10
  • [7] Isozaki Hideki, 2010, P 2010 C EMPIRICAL M, P944
  • [8] OpenNMT: Open-Source Toolkit for Neural Machine Translation
    Klein, Guillaume
    Kim, Yoon
    Deng, Yuntian
    Senellart, Jean
    Rush, Alexander M.
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017): SYSTEM DEMONSTRATIONS, 2017, : 67 - 72
  • [9] Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
    Krishna, Ranjay
    Zhu, Yuke
    Groth, Oliver
    Johnson, Justin
    Hata, Kenji
    Kravitz, Joshua
    Chen, Stephanie
    Kalantidis, Yannis
    Li, Li-Jia
    Shamma, David A.
    Bernstein, Michael S.
    Li Fei-Fei
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 123 (01) : 32 - 73
  • [10] Lalrempuii C., 2020, Machine Learning, Image Processing, Network Security and Data Sciences, P193