Hasse principle and weak approximation for multinorm equations

被引:14
作者
Demarche, Cyril [1 ]
Wei, Dasheng [2 ,3 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
Exact Sequence; Galois Extension; Weak Approximation; Permutation Module; Algebraic Tori;
D O I
10.1007/s11856-014-1071-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we are interested in local-global principles for multinorm equations where k is a global field, L (i) /k are finite separable field extensions and a a k*. In particular, we prove a result relating the Hasse principle and weak approximation for this equation to the Hasse principle and weak approximation for some classical norm equation N (F/k) (w) = a where . It provides a proof of a "weak approximation" analogue of a recent conjecture by Pollio and Rapinchuk about the multinorm principle. We also provide a counterexample to the original conjecture concerning the Hasse principle.
引用
收藏
页码:275 / 293
页数:19
相关论文
共 14 条
[1]   ON ALGEBRAIC TORI OF NORM TYPE [J].
HURLIMANN, W .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (04) :539-549
[2]  
Karpilovsky G, 1987, London Mathematical Society Monographs. New Series, V2
[3]  
NEUKIRCH J, 2008, FUNDAMENTAL PRINCIPL, V323
[4]   The multinorm principle for linearly disjoint Galois extensions [J].
Pollio, Timothy P. ;
Rapinchuk, Andrei S. .
JOURNAL OF NUMBER THEORY, 2013, 133 (02) :802-821
[5]   Local-global principles for embedding of fields with involution into simple algebras with involution [J].
Prasad, Gopal ;
Rapinchuk, Andrei S. .
COMMENTARII MATHEMATICI HELVETICI, 2010, 85 (03) :583-645
[6]  
RAPINCHUK A, 1994, ALGEBRAIC GROUPS NUM, V139
[7]  
SANSUC JJ, 1981, J REINE ANGEW MATH, V327, P12
[8]  
[No title captured]
[9]  
[No title captured]
[10]  
[No title captured]