Multigrid for an HDG method

被引:55
作者
Cockburn, B. [1 ]
Dubois, O. [2 ]
Gopalakrishnan, J. [3 ]
Tan, S. [4 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Ecole Polytech Montreal, Quebec City, PQ, Canada
[3] Portland State Univ, Portland, OR 97207 USA
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
multigrid methods; discontinuous Galerkin methods; hybrid methods; DISCONTINUOUS GALERKIN APPROXIMATIONS; ELLIPTIC PROBLEMS; ERROR ANALYSIS; MIXED METHODS; ALGORITHMS; PRECONDITIONERS; CONVERGENCE; CYCLE;
D O I
10.1093/imanum/drt024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the convergence of a multigrid algorithm for the hybridizable discontinuous Galerkin (HDG) method for diffusion problems. We prove that a nonnested multigrid V-cycle, with a single smoothing step per level, converges at a mesh-independent rate. Along the way, we study conditioning of the HDG method, prove new error estimates for it and identify an abstract class of problems for which a non-nested two-level multigrid cycle with one smoothing step converges even when the prolongation norm is greater than 1. Numerical experiments verifying our theoretical results are presented.
引用
收藏
页码:1386 / 1425
页数:40
相关论文
共 39 条
[11]  
Brenner SC, 2004, MATH COMPUT, V73, P1041
[12]   Convergence of nonconforming multigrid methods without full elliptic regularity [J].
Brenner, SC .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :25-53
[13]  
Brezzi F, 1991, MIXED HYBRID FINITE, P1
[14]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[15]   Error analysis of variable degree mixed methods for elliptic problems via hybridization [J].
Cockburn, B ;
Gopalakrishnan, J .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1653-1677
[16]   A characterization of hybridized mixed methods for second order elliptic problems [J].
Cockburn, B ;
Gopalakrishnan, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) :283-301
[17]  
Cockburn B, 2009, MATH COMPUT, V78, P1
[18]   A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems [J].
Cockburn, Bernardo ;
Dong, Bo ;
Guzman, Johnny .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :1887-1916
[19]   An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems [J].
Cockburn, Bernardo ;
Dong, Bo .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 32 (02) :233-262
[20]   A PROJECTION-BASED ERROR ANALYSIS OF HDG METHODS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Sayas, Francisco-Javier .
MATHEMATICS OF COMPUTATION, 2010, 79 (271) :1351-1367