Multigrid for an HDG method

被引:55
作者
Cockburn, B. [1 ]
Dubois, O. [2 ]
Gopalakrishnan, J. [3 ]
Tan, S. [4 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Ecole Polytech Montreal, Quebec City, PQ, Canada
[3] Portland State Univ, Portland, OR 97207 USA
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
multigrid methods; discontinuous Galerkin methods; hybrid methods; DISCONTINUOUS GALERKIN APPROXIMATIONS; ELLIPTIC PROBLEMS; ERROR ANALYSIS; MIXED METHODS; ALGORITHMS; PRECONDITIONERS; CONVERGENCE; CYCLE;
D O I
10.1093/imanum/drt024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the convergence of a multigrid algorithm for the hybridizable discontinuous Galerkin (HDG) method for diffusion problems. We prove that a nonnested multigrid V-cycle, with a single smoothing step per level, converges at a mesh-independent rate. Along the way, we study conditioning of the HDG method, prove new error estimates for it and identify an abstract class of problems for which a non-nested two-level multigrid cycle with one smoothing step converges even when the prolongation norm is greater than 1. Numerical experiments verifying our theoretical results are presented.
引用
收藏
页码:1386 / 1425
页数:40
相关论文
共 39 条
[1]  
[Anonymous], 1988, LECT NOTES MATH, DOI DOI 10.1007/BFB0086682
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1993, PITMAN RES NOTES MAT
[4]   Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: Non-overlapping case [J].
Antonietti, Paola F. ;
Ayuso, Blanca .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2007, 41 (01) :21-54
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations [J].
Ayuso de Dios, Blanca ;
Zikatanov, Ludmil .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 40 (1-3) :4-36
[7]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[8]  
Bramble JH, 2000, HDBK NUM AN, V7, P173
[9]  
Brenner S. C., 2005, Applied Numerical Analysis and Computational Mathematics, V2, P3, DOI 10.1002/anac.200410019
[10]   Multigrid algorithms for C0 interior penalty methods [J].
Brenner, SC ;
Sung, LY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :199-223