Three-dimensional Lorentz metrics and curvature homogeneity of order one

被引:33
|
作者
Bueken, P
Djoric, M
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Univ Belgrade, Fac Math, YU-11000 Belgrade, Yugoslavia
关键词
constant Ricci eigenvalues; curvature homogeneous Lorentzian manifolds; homogeneous manifolds;
D O I
10.1023/A:1006612120550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of three-dimensional Lorentzian manifolds which are curvature homogeneous up to order one but which are not locally homogeneous, and we obtain a complete local classification of these spaces. As a corollary we determine, for each Segre type of the Ricci curvature tensor, the smallest k is an element of N for which curvature homogeneity up to order k guarantees local homogeneity of the three-dimensional manifold under consideration.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 50 条
  • [21] Three-Dimensional Lorentz-Invariant Velocities
    Hill, James M.
    SYMMETRY-BASEL, 2024, 16 (09):
  • [22] Three-dimensional Lorentz-violating action
    Nascimento, J. R.
    Petrov, A. Yu.
    Wotzasek, C.
    Zarro, C. A. D.
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [23] Homogeneity on three-dimensional contact metric manifolds
    Calvaruso, G
    Perrone, D
    Vanhecke, L
    ISRAEL JOURNAL OF MATHEMATICS, 1999, 114 (1) : 301 - 321
  • [24] Clinical validation of three-dimensional tortuosity metrics based on the minimum curvature of approximating polynomial splines
    Dougherty, Geoff
    Johnson, Michael J.
    MEDICAL ENGINEERING & PHYSICS, 2008, 30 (02) : 190 - 198
  • [25] Regularity for Lorentz metrics under curvature bounds
    Anderson, MT
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (07) : 2994 - 3012
  • [26] Ruled surfaces as translating solitons of the inverse mean curvature flow in the three-dimensional Lorentz-Minkowski space
    Neto, Gregorio Silva
    Silva, Vanessa
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [27] Clinical applications of three-dimensional tortuosity metrics
    Dougherty, Geoff
    Johnson, Michael J.
    MEDICAL IMAGING 2007: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, 2007, 6511
  • [28] Three-dimensional metrics with a spherical homogeneous model
    Patrangenaru, V.
    Journal of Mathematical Physics, 39 (02):
  • [29] Conjugate pairing in the three-dimensional periodic Lorentz gas
    Dettmann, CP
    Morriss, GP
    Rondoni, L
    PHYSICAL REVIEW E, 1995, 52 (06): : R5746 - R5748
  • [30] Three-dimensional metrics with a spherical homogeneous model
    Patrangenaru, V
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) : 1189 - 1198