Three-dimensional Lorentz metrics and curvature homogeneity of order one

被引:33
|
作者
Bueken, P
Djoric, M
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Univ Belgrade, Fac Math, YU-11000 Belgrade, Yugoslavia
关键词
constant Ricci eigenvalues; curvature homogeneous Lorentzian manifolds; homogeneous manifolds;
D O I
10.1023/A:1006612120550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of three-dimensional Lorentzian manifolds which are curvature homogeneous up to order one but which are not locally homogeneous, and we obtain a complete local classification of these spaces. As a corollary we determine, for each Segre type of the Ricci curvature tensor, the smallest k is an element of N for which curvature homogeneity up to order k guarantees local homogeneity of the three-dimensional manifold under consideration.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 50 条
  • [1] Three-Dimensional Lorentz Metrics and Curvature Homogeneity of Order One
    Peter Bueken
    Mirjana Djorić
    Annals of Global Analysis and Geometry, 2000, 18 : 85 - 103
  • [2] Einstein-Like Lorentz Metrics and Three-Dimensional Curvature Homogeneity of Order One
    Calvaruso, G.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (03): : 412 - 424
  • [3] Semi-symmetric Lorentzian metrics and three-dimensional curvature homogeneity of order one
    Calvaruso, G.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2009, 79 (01): : 1 - 10
  • [4] Semi-symmetric Lorentzian metrics and three-dimensional curvature homogeneity of order one
    G. Calvaruso
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2009, 79 : 1 - 10
  • [5] Three-Dimensional Metrics as Deformations of a Constant Curvature Metric
    B. Coll
    J. Llosa
    D. Soler
    General Relativity and Gravitation, 2002, 34 : 269 - 282
  • [6] Three-dimensional metrics as deformations of a constant curvature metric
    Coll, B
    Llosa, J
    Soler, D
    GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (02) : 269 - 282
  • [7] Three-dimensional homogeneous critical metrics for quadratic curvature functionals
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Caeiro-Oliveira, S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (01) : 363 - 378
  • [8] Three-dimensional homogeneous critical metrics for quadratic curvature functionals
    M. Brozos-Vázquez
    E. García-Río
    S. Caeiro-Oliveira
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 363 - 378
  • [9] THREE-DIMENSIONAL DISCRETE CURVATURE FLOWS AND DISCRETE EINSTEIN METRICS
    Ge, Huabin
    Xu, Xu
    Zhang, Shijin
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (01) : 49 - 70
  • [10] Quasihomogeneous three-dimensional real-analytic Lorentz metrics do not exist
    Sorin Dumitrescu
    Karin Melnick
    Geometriae Dedicata, 2015, 179 : 229 - 253