Three-dimensional Lorentz metrics and curvature homogeneity of order one

被引:33
作者
Bueken, P
Djoric, M
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Univ Belgrade, Fac Math, YU-11000 Belgrade, Yugoslavia
关键词
constant Ricci eigenvalues; curvature homogeneous Lorentzian manifolds; homogeneous manifolds;
D O I
10.1023/A:1006612120550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the existence of three-dimensional Lorentzian manifolds which are curvature homogeneous up to order one but which are not locally homogeneous, and we obtain a complete local classification of these spaces. As a corollary we determine, for each Segre type of the Ricci curvature tensor, the smallest k is an element of N for which curvature homogeneity up to order k guarantees local homogeneity of the three-dimensional manifold under consideration.
引用
收藏
页码:85 / 103
页数:19
相关论文
共 17 条
[1]  
Boeckx Eric, 1996, Riemannian Manifolds of Conullity Two
[2]   Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures rho(1)=rho(2)not equal rho(3) [J].
Bueken, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (02) :1000-1013
[3]   On curvature homogeneous three-dimensional Lorentzian manifolds [J].
Bueken, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (04) :349-362
[4]   Examples of curvature homogeneous Lorentz metrics [J].
Bueken, P ;
Vanhecke, L .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) :L93-L96
[5]  
Cahen M., 1990, Journal of Geometry and Physics, V7, P571, DOI 10.1016/0393-0440(90)90007-P
[6]  
GROMOV M, 1987, ERGEB MATH GRENZGEB, V3, P9
[7]   3-DIMENSIONAL SPACE-TIMES [J].
HALL, GS ;
MORGAN, T ;
PERJES, Z .
GENERAL RELATIVITY AND GRAVITATION, 1987, 19 (11) :1137-1147
[8]  
KOWALSKI O, 1992, J MATH PURE APPL, V71, P471
[9]   CURVATURE HOMOGENEOUS SPACES WITH A SOLVABLE LIE GROUP AS HOMOGENEOUS MODEL [J].
KOWALSKI, O ;
TRICERRI, F ;
VANHECKE, L .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1992, 44 (03) :461-484
[10]  
ONeill B., 1983, PURE APPL MATH, V103